Contents

The following content is descibed in more detail in Egloff et al. (2018) (under review NMETH-A35040).

library(NestLink)
stopifnot(require(specL))

1 Input Pool Frequency

aa_pool_x8 <- c(rep('A', 12), rep('S', 0), rep('T', 12), rep('N', 12),
    rep('Q', 12), rep('D', 8),  rep('E', 0), rep('V', 12), rep('L', 0),
    rep('F', 0), rep('Y', 8), rep('W', 0), rep('G', 12), rep('P', 12))

aa_pool_1_2_9_10 <- c(rep('A', 8), rep('S', 7), rep('T', 7), rep('N', 6),
    rep('Q', 6), rep('D', 8), rep('E', 8), rep('V', 9), rep('L', 6),
    rep('F', 5), rep('Y', 9), rep('W', 6),  rep('G', 15), rep('P', 0))

aa_pool_3_8 <- c(rep('A', 5), rep('S', 4), rep('T', 5), rep('N', 2),
    rep('Q', 2), rep('D', 8), rep('E', 8), rep('V', 7), rep('L', 5),
    rep('F', 4), rep('Y', 6), rep('W', 4),  rep('G', 12), rep('P', 28))

2 Sanity Check

table(aa_pool_x8)
## aa_pool_x8
##  A  D  G  N  P  Q  T  V  Y 
## 12  8 12 12 12 12 12 12  8
length(aa_pool_x8)
## [1] 100
table(aa_pool_1_2_9_10)
## aa_pool_1_2_9_10
##  A  D  E  F  G  L  N  Q  S  T  V  W  Y 
##  8  8  8  5 15  6  6  6  7  7  9  6  9
length(aa_pool_1_2_9_10)
## [1] 100
table(aa_pool_3_8)
## aa_pool_3_8
##  A  D  E  F  G  L  N  P  Q  S  T  V  W  Y 
##  5  8  8  4 12  5  2 28  2  4  5  7  4  6
length(aa_pool_3_8)
## [1] 100

3 Compose Peptides

3.1 GPGXXXXXXXX(VR|VSR|VFGIR|VSGER) peptide

replicate(10, compose_GPGx8cTerm(pool=aa_pool_x8))
##  [1] "GPGDANTQAPAVFR"   "GPGQANDTQPPVSR"   "GPGVTVYGGGPVFR"   "GPGAGTDDAAAVFR"  
##  [5] "GPGQGVDGYADVSR"   "GPGNYGGQADYVFGIR" "GPGDNTPQNGDVFR"   "GPGAYYVANTTVFR"  
##  [9] "GPGGAVNVPQVVFR"   "GPGNDGADDGPVFR"

3.2 GPYYXXXXXXYYR peptide

compose_GPx10R(aa_pool_1_2_9_10, aa_pool_3_8)
## [1] "GPGYPFTTYLESR"

4 Generate peptides

set.seed(2)
(sample.size <- 3E+04)
## [1] 30000
peptides.GPGx8cTerm <- replicate(sample.size, compose_GPGx8cTerm(pool=aa_pool_x8))
peptides.GPx10R <- replicate(sample.size, compose_GPx10R(aa_pool_1_2_9_10, aa_pool_3_8))
# write.table(peptides.GPGx8cTerm, file='/tmp/pp.txt')

5 Peptide mass

5.1 Compute peptide mass

library(protViz)
(smp.peptide <- compose_GPGx8cTerm(aa_pool_x8))
## [1] "GPGPDDTDTYGVFR"
parentIonMass(smp.peptide)
## [1] 1496.665
pim.GPGx8cTerm <- unlist(lapply(peptides.GPGx8cTerm, function(x){parentIonMass(x)}))
pim.GPx10R <- unlist(lapply(peptides.GPx10R, function(x){parentIonMass(x)}))
pim.iRT <-  unlist(lapply(as.character(iRTpeptides$peptide), function(x){parentIonMass(x)}))

5.2 Draw parent ion mass histogram

(pim.min <- min(pim.GPGx8cTerm, pim.GPx10R))
## [1] 1037.512
(pim.max <- max(pim.GPGx8cTerm, pim.GPx10R))
## [1] 1890.877
(pim.breaks <- seq(round(pim.min - 1) , round(pim.max + 1) , length=75))
##  [1] 1037.000 1048.554 1060.108 1071.662 1083.216 1094.770 1106.324 1117.878
##  [9] 1129.432 1140.986 1152.541 1164.095 1175.649 1187.203 1198.757 1210.311
## [17] 1221.865 1233.419 1244.973 1256.527 1268.081 1279.635 1291.189 1302.743
## [25] 1314.297 1325.851 1337.405 1348.959 1360.514 1372.068 1383.622 1395.176
## [33] 1406.730 1418.284 1429.838 1441.392 1452.946 1464.500 1476.054 1487.608
## [41] 1499.162 1510.716 1522.270 1533.824 1545.378 1556.932 1568.486 1580.041
## [49] 1591.595 1603.149 1614.703 1626.257 1637.811 1649.365 1660.919 1672.473
## [57] 1684.027 1695.581 1707.135 1718.689 1730.243 1741.797 1753.351 1764.905
## [65] 1776.459 1788.014 1799.568 1811.122 1822.676 1834.230 1845.784 1857.338
## [73] 1868.892 1880.446 1892.000
hist(pim.GPGx8cTerm, breaks=pim.breaks, probability = TRUE, 
     col='#1111AAAA', xlab='peptide mass [Dalton]', ylim=c(0, 0.006))
hist(pim.GPx10R, breaks=pim.breaks,
     probability = TRUE, add=TRUE, col='#11AA1188')
abline(v=pim.iRT, col='grey')
legend("topleft", c('GPGx8cTerm', 'GPx10R', 'iRT'), 
     fill=c('#1111AAAA', '#11AA1133', 'grey'))

6 Hydrophobicity

6.1 Compute Hydrophobicity value using SSRC

the SSRC model, see Krokhin et al. (2004), is implemented as ssrc function in protViz.

For a sanity check we apply the ssrc function to a real world LC-MS run peptideStd consits of a digest of the FETUIN_BOVINE protein (400 amol) shipped with specL Panse et al. (2015).

library(specL)
ssrc <- sapply(peptideStd, function(x){ssrc(x$peptideSequence)})
rt <- unlist(lapply(peptideStd, function(x){x$rt}))
plot(ssrc, rt); abline(ssrc.lm <- lm(rt ~ ssrc), col='red'); 
legend("topleft", paste("spearman", round(cor(ssrc, rt, method='spearman'),2)))

here we apply ssrc to the simulated flycodes and iRT peptides Escher et al. (2012).

hyd.GPGx8cTerm <- ssrc(peptides.GPGx8cTerm)
hyd.GPx10R <- ssrc(peptides.GPx10R)
hyd.iRT <- ssrc(as.character(iRTpeptides$peptide))

(hyd.min <- min(hyd.GPGx8cTerm, hyd.GPx10R))
## [1] -7.63055
(hyd.max <- max(hyd.GPGx8cTerm, hyd.GPx10R))
## [1] 65.12112
hyd.breaks <- seq(round(hyd.min - 1) , round(hyd.max + 1) , length=75)

6.2 Draw hydrophobicity histogram

hist(hyd.GPGx8cTerm, breaks = hyd.breaks, probability = TRUE, 
     col='#1111AAAA', xlab='hydrophobicity', 
     ylim=c(0, 0.06),
     main='Histogram')
hist(hyd.GPx10R, breaks = hyd.breaks, probability = TRUE, add=TRUE, col='#11AA1188')
  abline(v=hyd.iRT, col='grey')
legend("topleft", c('GPGx8cTerm', 'GPx10R', 'iRT'),  fill=c('#1111AAAA', '#11AA1133', 'grey'))

7 Quality Control (QC)

7.1 QC of composed peptides

7.1.1 Input

round(table(aa_pool_x8)/length(aa_pool_x8), 2)
## aa_pool_x8
##    A    D    G    N    P    Q    T    V    Y 
## 0.12 0.08 0.12 0.12 0.12 0.12 0.12 0.12 0.08

7.1.2 Output

peptide2aa <- function(seq, from=4, to=4+8){
  unlist(lapply(seq, function(x){strsplit(substr(x, from, to), '')}))
}
peptides.GPGx8cTerm.aa <- peptide2aa(peptides.GPGx8cTerm)
round(table(peptides.GPGx8cTerm.aa)/length(peptides.GPGx8cTerm.aa), 2)
## peptides.GPGx8cTerm.aa
##    A    D    G    N    P    Q    T    V    Y 
## 0.11 0.07 0.11 0.11 0.11 0.11 0.11 0.22 0.07
peptides.GPx10R.aa <- peptide2aa(peptides.GPx10R, from=3, to=12)
round(table(peptides.GPx10R.aa)/length(peptides.GPx10R.aa), 2)
## peptides.GPx10R.aa
##    A    D    E    F    G    L    N    P    Q    S    T    V    W    Y 
## 0.06 0.08 0.08 0.04 0.13 0.05 0.04 0.17 0.04 0.05 0.06 0.08 0.05 0.07

7.2 Count GP patterns

sample.size 
## [1] 30000
length(grep('^GP(.*)GP(.*)R$', peptides.GPGx8cTerm))
## [1] 6319
length(grep('^GP(.*)GP(.*)R$', peptides.GPx10R))
## [1] 5959

7.3 Compute AA frequency table

count the peptides having the same AA composition

sample.size 
## [1] 30000
table(table(tt<-unlist(lapply(peptides.GPGx8cTerm, 
  function(x){paste(sort(unlist(strsplit(x, ''))), collapse='')}))))
## 
##    1    2    3    4    5    6    7    8    9   10   11   12   13   14   16   17 
## 9541 3606 1607  792  427  204  104   50   34   20    6    5    6    2    1    1
# write.table(tt, file='GPGx8cTerm.txt')
table(table(unlist(lapply(peptides.GPx10R, 
  function(x){paste(sort(unlist(strsplit(x, ''))), collapse='')}))))
## 
##     1     2     3     4     5 
## 24844  2104   265    32     5

the NestLink function plot_in_silico_LCMS_map graphs the LC-MS maps.

par(mfrow=c(2, 2))
h <- NestLink:::.plot_in_silico_LCMS_map(peptides.GPGx8cTerm, main='GPGx8cTerm')
h <- NestLink:::.plot_in_silico_LCMS_map(peptides.GPx10R, main='GPx10R')

8 Session info

Here is the output of the sessionInfo() commmand.

## R Under development (unstable) (2024-10-21 r87258)
## Platform: x86_64-pc-linux-gnu
## Running under: Ubuntu 24.04.1 LTS
## 
## Matrix products: default
## BLAS:   /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so 
## LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
## 
## locale:
##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
##  [3] LC_TIME=en_GB              LC_COLLATE=C              
##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
##  [9] LC_ADDRESS=C               LC_TELEPHONE=C            
## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
## 
## time zone: America/New_York
## tzcode source: system (glibc)
## 
## attached base packages:
## [1] stats4    stats     graphics  grDevices utils     datasets  methods  
## [8] base     
## 
## other attached packages:
##  [1] specL_1.39.0                seqinr_4.2-36              
##  [3] RSQLite_2.3.7               DBI_1.2.3                  
##  [5] knitr_1.48                  scales_1.3.0               
##  [7] ggplot2_3.5.1               NestLink_1.21.0            
##  [9] ShortRead_1.63.2            GenomicAlignments_1.41.0   
## [11] SummarizedExperiment_1.35.5 Biobase_2.65.1             
## [13] MatrixGenerics_1.17.1       matrixStats_1.4.1          
## [15] Rsamtools_2.21.2            GenomicRanges_1.57.2       
## [17] BiocParallel_1.39.0         protViz_0.7.9              
## [19] gplots_3.2.0                Biostrings_2.73.2          
## [21] GenomeInfoDb_1.41.2         XVector_0.45.0             
## [23] IRanges_2.39.2              S4Vectors_0.43.2           
## [25] ExperimentHub_2.13.1        AnnotationHub_3.13.3       
## [27] BiocFileCache_2.13.2        dbplyr_2.5.0               
## [29] BiocGenerics_0.51.3         BiocStyle_2.33.1           
## 
## loaded via a namespace (and not attached):
##  [1] bitops_1.0-9            deldir_2.0-4            rlang_1.1.4            
##  [4] magrittr_2.0.3          ade4_1.7-22             compiler_4.5.0         
##  [7] mgcv_1.9-1              png_0.1-8               vctrs_0.6.5            
## [10] pwalign_1.1.0           pkgconfig_2.0.3         crayon_1.5.3           
## [13] fastmap_1.2.0           magick_2.8.5            labeling_0.4.3         
## [16] caTools_1.18.3          utf8_1.2.4              rmarkdown_2.28         
## [19] UCSC.utils_1.1.0        tinytex_0.53            purrr_1.0.2            
## [22] bit_4.5.0               xfun_0.48               zlibbioc_1.51.2        
## [25] cachem_1.1.0            jsonlite_1.8.9          blob_1.2.4             
## [28] highr_0.11              DelayedArray_0.31.14    jpeg_0.1-10            
## [31] parallel_4.5.0          R6_2.5.1                bslib_0.8.0            
## [34] RColorBrewer_1.1-3      jquerylib_0.1.4         Rcpp_1.0.13            
## [37] bookdown_0.41           splines_4.5.0           Matrix_1.7-1           
## [40] tidyselect_1.2.1        abind_1.4-8             yaml_2.3.10            
## [43] codetools_0.2-20        hwriter_1.3.2.1         curl_5.2.3             
## [46] lattice_0.22-6          tibble_3.2.1            withr_3.0.1            
## [49] KEGGREST_1.45.1         evaluate_1.0.1          pillar_1.9.0           
## [52] BiocManager_1.30.25     filelock_1.0.3          KernSmooth_2.23-24     
## [55] generics_0.1.3          BiocVersion_3.20.0      munsell_0.5.1          
## [58] gtools_3.9.5            glue_1.8.0              tools_4.5.0            
## [61] interp_1.1-6            grid_4.5.0              latticeExtra_0.6-30    
## [64] AnnotationDbi_1.67.0    colorspace_2.1-1        nlme_3.1-166           
## [67] GenomeInfoDbData_1.2.13 cli_3.6.3               rappdirs_0.3.3         
## [70] fansi_1.0.6             S4Arrays_1.5.11         dplyr_1.1.4            
## [73] gtable_0.3.6            sass_0.4.9              digest_0.6.37          
## [76] SparseArray_1.5.45      farver_2.1.2            memoise_2.0.1          
## [79] htmltools_0.5.8.1       lifecycle_1.0.4         httr_1.4.7             
## [82] mime_0.12               MASS_7.3-61             bit64_4.5.2

References

Egloff, Pascal, Iwan Zimmermann, Fabian M. Arnold, Cedric A. J. Hutter, Damien Damien Morger, Lennart Opitz, Lucy Poveda, et al. 2018. Engineered Peptide Barcodes for In-Depth Analyses of Binding Protein Ensembles.” bioRxiv. https://doi.org/10.1101/287813.
Escher, C., L. Reiter, B. MacLean, R. Ossola, F. Herzog, J. Chilton, M. J. MacCoss, and O. Rinner. 2012. Using iRT, a normalized retention time for more targeted measurement of peptides.” Proteomics 12 (8): 1111–21.
Krokhin, O. V., R. Craig, V. Spicer, W. Ens, K. G. Standing, R. C. Beavis, and J. A. Wilkins. 2004. An improved model for prediction of retention times of tryptic peptides in ion pair reversed-phase HPLC: its application to protein peptide mapping by off-line HPLC-MALDI MS.” Mol. Cell Proteomics 3 (9): 908–19.
Panse, C., C. Trachsel, J. Grossmann, and R. Schlapbach. 2015. specL–an R/Bioconductor package to prepare peptide spectrum matches for use in targeted proteomics.” Bioinformatics 31 (13): 2228–31.