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1 Overview

The trigger package guides an integrative genomic analysis. Integrative genomic data usually con-
sists of genomic information from various sources, which includes genetic information (genotype),
high-dimensional intermediate traits in the genome (e.g., gene expression, protein abundance)
and/or higher-order traits (phenotypes) for an organism. In the following examples, we mainly
discuss intermediate traits of gene expression. It should be noted that this package can also be
applied to protein abundance and/or other continuous trait expression.

The package contains functions to: (1) construct global linkage map between genetic marker and
gene expression; (2) analyze multiple-locus linkage (epistasis) for gene expression; (3) quantify the
proportion of genome-wide variation explained by each locus and identify eQTL linkage hotspots;
(4) estimate pair-wise causal gene regulatory probability and construct gene regulatory networks;
and (5) identify causal genes for a quantitative trait of interest.

This document provides a tutorial for using the trigger package. The package contains the following
functions:

• trigger.build: Format the input data

• trigger.link: Genome-wide eQTL analysis
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• trigger.mlink: Multi-locus linkage (epistasis) analysis

• trigger.eigenR2: Estimate the proportion of genome-wide variation explained by each eQTL

• trigger.loclink and trigger.net: Network-Trigger analysis

• trigger.netPlot2ps: Write the network from a trigger probability matrix to a postscript file

• trigger.trait: Trait-Trigger analysis

To view the help file for the function trigger.link within R, type ?trigger.link. If you identify
bugs related to basic usage please contact the authors directly. Otherwise, any questions or
problems rergarding snm should be sent to the Bioconductor mailing list. Please do not send
requests for general usage to the authors.

2 A yeast data set

The basic input data of this package consists of (1) a mm × n marker genotype matrix with mm

marker genotypes in rows and n samples/arrays in columns; (2) a me × n gene expression matrix
(or intermediate trait expression matrix) with me genes in rows andn samples/arrays in columns;
(3) a mm × 2 marker position matrix, of which the first column is the chromosome name, and
the second column is the position of each marker, with each row corresponding to one marker in
the marker genotype matrix; and (4) a me × 3 gene position matrix, of which the first column
is the chromosome name, and the second/third column is the starting/ending coordinate of each
gene, with each row corresponding to one gene in the expression matrix. Please code the names of
autosomal chromosomes to be integers and the name of sex chromsome to be “X". Also note that
the same unit (e.g., base pair, kb, or cM) should be used for marker positions and gene positions.
As an illustration of input data format and various analysis offered in this package, we demonstrate
the functionality of this package using a data set from a yeast eQTL study [1, 4]. In the study, a
genetic cross of Saccharomyces cerevisiase BY4716 and RM11-1a strains was utilized to generated
112 F1 recombinant segregants. Each individual strain was then genotyped and gene expression
measurements were done in a controlled growth environment. The data set consists of a list of four
matrices:

• marker: A 3244× 112 genotype matrix

• exp: A 6216× 112 gene expression matrix

• marker.pos: A 3244× 2 matrix of marker position information

• exp.pos: A 6216× 3 matrix of gene position information.

This yeast data set is included in the package as the dataset yeast. To load the data, type
data(yeast), and to view a description of this data type ?yeast. Once the data is loaded, one
can type attach(yeast) to attach the yeast data. After the analysis is done, type detach(yeast)
to detach the data set. We use a randomly generated subset of the data for the purpose of this
vignette.

> library(trigger)
> data(yeast)
> names(yeast)
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[1] "marker" "exp" "marker.pos" "exp.pos"

> #reduce data size for vignette run time
> set.seed(123)
> #select subset of 400 traits
> gidx = sort(sample(1:6216, size = 400))
> yeast$exp = yeast$exp[gidx,]
> yeast$exp.pos = yeast$exp.pos[gidx,]
> #select subset of markers
> midx = sort(sample(1:3244, size = 500))
> yeast$marker = yeast$marker[midx,]
> yeast$marker.pos = yeast$marker.pos[midx,]
> attach(yeast)
> dim(exp)

[1] 400 112

The function trigger.build formats the input data and returns a S4 class object for the
convenience of subsequent analyses. It will convert the marker genotype matrix to a matrix of
integers starting from 1 (a matrix of 1 or 2 for haploid genotypes, or 1, 2, or 3 for diploid genotypes).

> trig.obj <- trigger.build(marker=marker, exp=exp,
+ marker.pos=marker.pos, exp.pos=exp.pos)
> trig.obj

*** TRIGGER object ***
Marker matrix with 500 rows and 112 columns
Expression matrix with 400 rows and 112 columns

> detach(yeast)

3 Genome-wide eQTL analysis

The function trigger.link computes pair-wise likelihood ratio statistic for linkage of each gene-
marker pair in the genome. If there are markers on sex chromosome, gender of each sample should
be specified and the gender-specific mean will be computed for each genotype to obtain a likelihood
ratio statistic. When the option norm is TRUE, each gene (row) of expression data matrix will be
normalized to standard N(0, 1) based on the rank of the expression values for each gene. Since the
null likelihood ratio statistic follow a chi-square distribution, parametric p-values will be computed
based on the observed statistics. The function updates trig.obj with a matrix stat of likelihood
ratio statistics and a matrix of p-values pvalue corresponding to gene-marker pairs in the genome,
with genes in rows and markers in columns.

The function plot with the argument type = "link" takes the matrix of p-values for linkage of each
gene-marker pair, calls the measures below a cutoff to be significant and plots the significant gene-
marker pairs in a genome-wide eQTL linkage map. Genes and markers are ordered according to their
genome positions. Applying the functions to the yeast data set, in Figure 1 we plot the genome-wide
linkage map of eQTL and gene expression at p-value cutoff 3.3 × 10−4, which corresponds to 5%
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FDR[5]. Note that the function plot thresholds the significance measures pvalue below cutoff. If
one would like to threshold the significance measures above a threshold, one can apply the function
to the negative matrix of significance measures and choose a negative cutoff.

> trig.obj = trigger.link(trig.obj, norm = TRUE)

> plot(trig.obj, type = "link", cutoff = 1e-5)

Cutoff =1e−05
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Figure 1: Genome-wide eQTL and gene expression linkage map.

4 Multi-locus linkage (epistasis) analysis

The function mlink performs multi-locus linkage (epistasis) analysis for each selected gene ex-
pression. The option idx in the function can be used to select a subset of genes at a time. The
function identifies a major locus and a secondary locus for each selected gene and estimates the
likelihood ratio statistics of linkage. It then computes the posterior probabilities of major locus
linkage, secondary locus linkage and joint linkage. Q-values (estimated false discovery rates) can be
estimated for the joint linkage probabilities. A detailed description of the algorithm can be found
in [4]. The function outputs a list of indices of major locus and secondary locus for each selected
gene, a matrix of major locus linkage probability, secondary locus linkage probability and joint
linkage probability, and a vector of q-values for joint linkage.

To visualize the significant epistasis loci in the genome, the function plot with argument type =
"mlink" takes the output from mlink and plots the locus-pair showing significant epistasis effect
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at a q-value cutoff qcut. Each number in the output plot indicates the number of significant genes
that are affected by the epistasis effect from a marker pair (if bin.size = NULL). If the option
bin.size is specified, each chromosome will be divided into several bins, each with size bin.size.
Markers within a bin will be considered as at a same position. Each number in the output plot
indicates the number of significant genes that are affected by the epistasis effect from two markers,
one from each bin. We plot the marker/bins with according to their genome positions. The x and
y axis are the positions of the markers/bins.

We apply the function mlink to the yeast data set and use plot to plot the significant epistasis loci
at a 10% FDR joint significant level [5] in Figure 2.

> trig.obj = trigger.loclink(trig.obj)

[1] Computing local-linkages with a window size of 30 kb
[1] 10% completed
[1] 20% completed
[1] 30% completed
[1] 40% completed
[1] 50% completed
[1] 60% completed
[1] 70% completed
[1] 80% completed
[1] 90% completed
[1] 100% completed

> trig.obj = trigger.mlink(trig.obj, B = 10, idx = NULL)

[1] Start to calculate multi-locus linkage statistics ...
[1] 10% completed
[1] 20% completed
[1] 30% completed
[1] 40% completed
[1] 50% completed
[1] 60% completed
[1] 70% completed
[1] 80% completed
[1] 90% completed

> plot(trig.obj, type = "mlink", qcut = 0.2, bin.size = 50000)

5 Proportion of genome-wide variation captured by each eQTL

A classic R2 measure can be used to estimate the proportion of one gene expression variation that
captured by a locus of interest, and the R2 in this setting is often called “heritability" in genetics.
Recently, when genome-wide expression measurements are readily available, a high-dimensional
version of R2 is proposed to estimate the proportion of genome-wide expression variation explained
by a locus [3]. Here we call it as eigenR2. The function trigger.eigenR2 estimates the eigenR2

for each locus in the genome, and the plot function with argument type = "eigenR2" plots the
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Figure 2: Plot of significant epistasis loci at 10% FDR level.

estimated eigenR2 values for each marker versus its genome position. A locus with high eigenR2

is potentially a linkage hotspot that a lot of the genes are linked to. By chance, a random locus
not capturing any genome-wide expression variation will have an expected eigenR2 of 1

n−1 , where
n is the sample size. If the logical option adjust=TRUE, the R2 estimates will be adjusted for
sample size effect and the expected eigenR2 after adjustment is zero. One can also use the function
trigger.eigenR2 to compute the average of R2 of a locus for every gene expression, by setting the
logical option meanR2=TRUE (Fig 3).

> trig.obj = trigger.eigenR2(trig.obj, adjust = FALSE)

> plot(trig.obj, type = "eigenR2")

6 Network-Trigger analysis

The functions trigger.loclink and trigger.net provide an analysis based on an algorithm
called “Trigger" to construct gene regulatory network [2]. The algorithm establishes the equivalence
between a type of causal regulation of two genes to three testable conditions: 1) local linkage of a
first gene, 2) secondary linkage of a second gene to the same locus, and 3) conditional independence
between locus to second gene given the expression of the first one. The function estimates the
posterior probability of each condition for every selected pair of genes in the genome and obtains
the joint posterior probability of causal regulation for each gene pair as the product of the proba-
bilities of three conditions. These regulatory probabilities can further be used to construct a gene
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Figure 3: Plot of genome-wide eigenR2

regulatory network.

The function trigger.loclink identifies the best local linkage marker for every gene in the genome
and estimates the local linkage probability for each by borrowing information across genes. One can
use the option window.size to specify the size of a window that places a gene in the center. Every
marker within the window is a candidate marker for local-linkage to the gene. If window.size =
NULL, all the markers on a same chromosome as the gene will be used as candidate markers for
local-linkage.

The function trigger.net takes the output of trigger.loclink and further estimates the sec-
ondary linkage and conditional independence probabilities. By specifying the probability threshold
prob.cut, one can choose to only compute regulatory probabilities of a regulator to all the other
genes, if the local-linkage probability of the regulator is above the threshold. The local linkage
condition is not a necessary condition for establishing causality. The inclusion of this condition will
increase the estimation efficiency and accuracy, and make the estimates conservative. An option of
not including this condition by setting include.loc = FALSE is also provided. One can also select
a subset of putative causal genes to construct the network, by specific the indices of the genes in
the argument idx. In the following example, the network is constructed by analyzing by selecting
all genes idx = NULL in the dataset. The function trigger.net outputs a matrix of genome-wide
regulatory probabilities with putative regulators in rows and regulated genes in columns. The ma-
trix is not symmetric. If gene i is estimated to be causal for gene j with high probability, then
the probability of regulation from gene j to gene i should be low. Note that the function writes
the data to a file net_trigg_prob.txt in the working directory and reads in the file at the end of
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computation. Before repeating the calculation, this file should be deleted since new results will be
appended to the file.

> trig.obj = trigger.loclink(trig.obj, window.size = 10000)

[1] Computing local-linkages with a window size of 10 kb
[1] 10% completed
[1] 20% completed
[1] 30% completed
[1] 40% completed
[1] 50% completed
[1] 60% completed
[1] 70% completed
[1] 80% completed
[1] 90% completed
[1] 100% completed

> trig.prob = trigger.net(trig.obj, Bsec = 100, idx = NULL)

[1] Computing network-Trigger regulatory probabilities ...
[1] 10% completed
[1] 20% completed
[1] 30% completed
[1] 40% completed
[1] 50% completed
[1] 60% completed
[1] 70% completed
[1] 80% completed
[1] 90% completed
[1] 100% completed

> dim(trig.prob)

[1] 400 400

7 Visualize directed network from estimated regulatory probability
matrix

The package also offers a function trigger.netPlot2ps to visualize the structure of the causal
regulatory network from network-Trigger probabilities. The function inputs a regulatory probabil-
ity matrix trig.prob, constructs a directed network based on significant regulatory relationships
above a threshold pcut and writes the network to a postscript file with name filenam. The
function is dependent on the software Graphviz (available at http://www.graphviz.org/). If the
total number of significant regulatory relationships (directed edges) of the network is below 1000,
we plot each gene (node) with shape node.shape with its name labeled inside. The default shape
is box. Otherwise, we plot each gene as a dot without name. The top nreg (by default nreg=20)
regulators will be plotted in red ellipses with their names inside. One can also specified the color
of nodes and edges in the plot with node.color and edge.color, respectively. The default color
for genes (except for top regulators) is green, with blue edges connecting them. See manual of
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Graphviz for other available colors and shapes of nodes.

Our function will output a filenam.dot file, which is then written to a postscript file using
Graphviz with the following four possible layouts: radial (default), energy-minimized, circular
and hierarchical One can specify just the initial letter to choose one layout. For large networks,
radial or energy-minimized is recommended. Once the layout is chosen, the function will run
one of the following command to construct a network and write the network to a postscript file.

$ twopi -Tps filenam.dot -o filenam.ps # radial layout, the default layout
$ neato -Tps -Gmaxiter=1000 filenam.dot -o filenam.ps # energy-minimized layout
$ circo -Tps filenam.dot -o filenam.ps # circular layout
$ dot -Tps filenam.dot -o filenam.ps # hierarchical layout

The command neato plots the network with energy-minimized layout. To avoid long waiting for
constructing a large network, we specify the maximum iteration to be 1000 (-Gmaxiter=1000).

In Figure 4, we apply the function trigger.netPlot2ps to the estimated yeast regulatory proba-
bility matrix from previous section (output from trigger.net function). The resulting network is
written to a postscript file net95.ps with energy-minimized layout.

trigger.netPlot2ps(trig.obj, trig.prob, pcut = 0.95, filenam = "net50", nreg = 20)

system("ps2pdf net50.ps")

8 Trait-Trigger analysis

Trait-Trigger is an algorithm that identifies the causal genes involved in the pathway from a fixed
QTL to a quantitative trait of interest, where the trait can either be a gene transcript or a complex
phenotypic trait. The function trigger.trait identifies putative causal genes for a given trait of
interest, and then estimates the p-value for causal linkage for each regulator.

First, the genotype-expression data has to be exported to cross formation (See qtl package for
details). This is done by the function trigger.export2cross, which formats the data, writes it to
a .csv file in the working directory and then reads in the data and stores it in a cross file.

> # Re-attach dataset to re-include all traits for analysis
> data(yeast); attach(yeast)
> dim(exp)

[1] 6216 112

> trig.obj <- trigger.build(marker=marker, exp=exp,
+ marker.pos=marker.pos, exp.pos=exp.pos)

> cross = trigger.export2cross(trig.obj, plotarg = FALSE, verbose = FALSE)
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Figure 4: A yeast causal regulatory network at 95% trigger probability cutoff for the selected 400
genes.

--Read the following data:
112 individuals
3244 markers
6216 phenotypes

--Cross type: bc

We apply the function to identify the causal genes for a DSE1, a daughter cell-specific protein, which
was shown to be regulated by the regulator AMN1 responsible for daughter cell separation[6].
If addplot = TRUE, the function plots a linkage map (Figure 5) for the trait over the chromosome or
chromosome where the LOD score for linkage crosses the threshold specified by thr. The function
identifies AMN1 as the putative causal regulator having the minimum p-value for causal linkage.
Alternatively, the trait could be also entered as an expression vector trait = exp[1727,] or a
phenotype vector having the same number of columns as the genotype data.
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> causreg = trigger.trait(trig.obj, trait = "DSE1", cross = cross, addplot = TRUE, thr = 3)

Number of significant surrogate variables is: 14
Iteration (out of 5 ):1 2 3 4 5 Fitting 3 genes on chromosome 2
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Figure 5: A linkage map for trait DSE1
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