Package 'supraHex'

May 25, 2024

Type Package

Title supraHex: a supra-hexagonal map for analysing tabular omics data
Version 1.43.0
Date 2021-5-24
Author Hai Fang and Julian Gough
Maintainer Hai Fang hfang@well.ox.ac.uk
Depends R (>= 3.6), hexbin
Imports ape, MASS, grDevices, graphics, stats, readr, tibble, tidyr, dplyr, stringr, purrr, magrittr, igraph, methods
Description A supra-hexagonal map is a giant hexagon on a 2-dimensional grid seamlessly consisting of smaller hexagons. It is supposed to train, analyse and visualise a highdimensional omics input data. The supraHex is able to carry out gene clustering/metaclustering and sample correlation, plus intuitive visualisations to facilitate exploratory analysis. More importantly, it allows for overlaying additional data onto the trained map to explore relations between input and additional data. So with supraHex, it is also possible to carry out multilayer omics data comparisons. Newly added utilities are advanced heatmap visualisation and tree-based analysis of sample relationships. Uniquely to this package, users can ultrafastly understand any tabular omics data, both scientifically and artistically, especially in a sam-ple-specific fashion but without loss of information on large genes.

URL http://suprahex.r-forge.r-project.org
Collate sPipeline.r sHexGrid.r sTopology.r sInitial.r sTrainology.r sTrainSeq.r sTrainBatch.r sBMH.r sNeighDirect.r sNeighAny.r sHexDist.r sDistance.r sDmat.r sDmatMinima.r sDmatCluster.r sCompReorder.r sWriteData.r sMapOverlay.r visHexPattern.r visHexGrid.r visHexMapping.r visHexComp.r visColormap.r visColorbar.r visVp.r visHexMulComp.r visHexAnimate.r visCompReorder.r visDmatCluster.r visKernels.r visColoralpha.r visHeatmap.r visHeatmapAdv.r visTreeBootstrap.r visTreeBSclust.r visDmatHeatmap.r visHexBarplot.r sHexPolygon.r sHexGridVariant.r

License GPL-2

biocViews Software, Clustering, Visualization, GeneExpression
git_url https://git.bioconductor.org/packages/supraHex
git_branch devel
git_last_commit 7c4793e
git_last_commit_date 2024-04-30
Repository Bioconductor 3.20
Date/Publication 2024-05-24

Contents

Fang 3
Golub 3
sBMH 4
sCompReorder 5
sDistance 8
sDmat 10
sDmatCluster 11
sDmatMinima 12
sHexDist 14
sHexGrid 15
sHexGridVariant 16
sHexPolygon 19
sInitial 20
sMapOverlay 22
sNeighAny 24
sNeighDirect 25
sPipeline 26
sTopology 29
sTrainBatch 32
sTrainology 34
sTrainSeq 36
sWriteData 38
visColoralpha 39
visColorbar 40
visColormap 41
visCompReorder 42
visDmatCluster 44
visDmatHeatmap 46
visHeatmap 48
visHeatmapAdv 51
visHexAnimate 55
visHexBarplot 58
visHexComp 60
visHexGrid 61
visHexMapping 63
visHexMulComp 65
visHexPattern 67
visKernels 69
visTreeBootstrap 70
visTreeBSclust 74
visVp 77
Xiang 78
Index 80
FangHuman embryo gene expression dataset from Fang et al. (2010)

Description

Human embryo dataset contains gene expression levels (5441 genes and 18 embryo samples) from Fang et al. (2010).

Usage

data(Fang)

Value

- Fang: a gene expression matrix of 5441 genes x 18 samples, involving six successive stages, each with three replicates.
- Fang. sampleinfo: a matrix containing the information of the 18 samples for the expression matrix Fang. The three columns correspond to the sample information: "Name", "Stage" and "Replicate".
- Fang.geneinfo: a matrix containing the information of the 5441 genes for the expression matrix Fang. The three columns correspond to the gene information: "AffyID", "EntrezGene" and "Symbol".

References

Fang et al. (2010). Transcriptome analysis of early organogenesis in human embryos. Developmental Cell, 19(1):174-84.

Golub Leukemia gene expression dataset from Golub et al. (1999)

Description

Leukemia dataset (learning set) contains gene expression levels (3051 genes and 38 patient samples) from Golub et al. (1999). This dataset has been pre-processed: capping into floor of 100 and ceiling of 16000 ; filtering by exclusion of genes with $\max / \min <=5$ or $\max -\min <=500$, where \max and min refer respectively to the maximum and minimum intensities for a particular gene across mRNA samples; 2-base logarithmic transformation.

Usage

```
data(Golub)
```


Value

- Golub: a gene expression matrix of 3051 genes x 38 samples. These samples include 11 acute myeloid leukemia (AML) and 27 acute lymphoblastic leukemia (ALL) which can be further subtyped into 19 B-cell ALL and 8 T-cell ALL.

References

Golub et al. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science, Vol. 286:531-537.

```
sBMH
```

Function to identify the best-matching hexagons/rectangles for the input data

Description

sBMH is supposed to identify the best-matching hexagons/rectangles (BMH) for the input data.

Usage

sBMH(sMap, data, which_bmh = c("best", "worst", "all"))

Arguments

sMap	an object of class "sMap" or a codebook matrix
data	a data frame or matrix of input data
which_bmh	which BMH is requested. It can be a vector consisting of any integer values from $[1$, nHex $]$. Alternatively, it can also be one of "best", "worst" and "all" choices.
	Here, "best" is equivalent to 1, "worst" for $n H e x$, and "all" for $\operatorname{seq}(1, n H e x)$

Value

a list with following components:

- bmh: the requested BMH matrix of dlen x length(which_bmh), where dlen is the total number of rows of the input data
- qerr: the corresponding matrix of quantization errors (i.e., the distance between the input data and their BMH), with the same dimensions as "bmh" above
- mqe: the mean quantization error for the "best" BMH
- call: the call that produced this result

Note

"which_bmh" upon request can be a vector consisting of any integer values from [1, nHex]

See Also

sPipeline

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
# but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")
# 3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")
# 4) define trainology at "rough" stage
sT_rough <- sTrainology(sMap=sI, data=data, stage="rough")
# 5) training at "rough" stage
sM_rough <- sTrainBatch(sMap=sI, data=data, sTrain=sT_rough)
# 6) define trainology at "finetune" stage
sT_finetune <- sTrainology(sMap=sI, data=data, stage="finetune")
# 7) training at "finetune" stage
sM_finetune <- sTrainBatch(sMap=sM_rough, data=data, sTrain=sT_rough)
# 8) find the best-matching hexagons/rectangles for the input data
response <- sBMH(sMap=sM_finetune, data=data, which_bmh="best")
```

sCompReorder Function to reorder component planes

Description

sCompReorder is supposed to reorder component planes for the input map/data. It returns an object of class "sReorder". It is realized by using a new map grid (with sheet shape consisting of a rectangular lattice) to train component plane vectors (either column-wise vectors of codebook/data matrix or the covariance matrix thereof). As a result, similar component planes are placed closer to each other. It is highly recommend to use trained map (i.e. codebook matrix) as input if data matrix is hugely big to save computational costs.

Usage

```
    sCompReorder(
    sMap,
    xdim = NULL,
    ydim = NULL,
    amplifier = NULL,
    metric = c("none", "pearson", "spearman", "kendall", "euclidean",
    "manhattan", "cos",
    "mi"),
    init = c("linear", "uniform", "sample"),
    seed = 825,
    algorithm = c("sequential", "batch"),
    alphaType = c("invert", "linear", "power"),
    neighKernel = c("gaussian", "bubble", "cutgaussian", "ep", "gamma"),
    finetuneSustain = TRUE
    )
```


Arguments

sMap	an object of class "sMap" or input data frame/matrix
xdim	an integer specifying x-dimension of the grid
ydim	an integer specifying y-dimension of the grid
amplifier	an integer specifying the amplifier (3 by default) of the number of component planes. The product of the component number and the amplifier constitutes the number of rectangles in the sheet grid
metric	distance metric used to define the similarity between component planes. It can be "none", which means directly using column-wise vectors of codebook/data matrix. Otherwise, first calculate the covariance matrix from the codebook/data matrix. The distance metric used for calculating the covariance matrix be- tween component planes can be: "pearson" for pearson correlation, "spearman" for spearman rank correlation, "kendall" for kendall tau rank correlation, "eu- clidean" for euclidean distance, "manhattan" for cityblock distance, "cos" for cosine similarity, "mi" for mutual information. See sDistance for details
init	an initialisation method. It can be one of "uniform", "sample" and "linear" ini- tialisation methods
seed	an integer specifying the seed the training algorithm. It can be one of "sequential" and "batch" algorithm.
algorithm	By default, it uses 'sequential' algorithm. If the input data contains a large number of samples but not a great amount of zero entries, then it is reasonable to use 'batch' algorithm for its fast computations (probably also without the
compromise of accuracy)	

logical to indicate whether sustain the "finetune" training. If true, it will repeat the "finetune" stage until the mean quantization error does get worse. By default, it sets to TRUE

Value

an object of class "sReorder", a list with following components:

- nHex: the total number of rectanges in the grid
- xdim: x-dimension of the grid
- ydim: y-dimension of the grid
- uOrder: the unique order/placement for each component plane that is reordered to the "sheet"shape grid with rectangular lattice
- coord: a matrix of nHex x 2, with each row corresponding to the coordinates of each "uOrder" rectangle in the 2D map grid
- call: the call that produced this result

Note

All component planes are uniquely placed within a "sheet"-shape rectangle grid:

- Each component plane mapped to the "sheet"-shape grid with rectangular lattice is determinied iteratively in an order from the best matched to the next compromised one.
- If multiple compoments are hit in the same rectangular lattice, the worse one is always sacrificed by moving to the next best one till all components are placed somewhere exclusively on their own.

The size of "sheet"-shape rectangle grid depends on the input arguments:

- How the input parameters are used to determine nHex is taken priority in the following order: "xdim \& ydim" > "nHex" > "data".
- If both of xdim and ydim are given, $n H e x=x \operatorname{dim} * y d i m$.
- If only data is input, $n H e x=5 * \operatorname{sqrt}($ dlen $)$, where dlen is the number of rows of the input data.
- After nHex is determined, xy -dimensions of rectangle grid are then determined according to the square root of the two biggest eigenvalues of the input data.

See Also

sTopology, sPipeline, sBMH, sDistance, visCompReorder

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
colnames(data) <- paste(rep('S',10), seq(1:10), sep="")
# 2) get trained using by default setup
```

```
sMap <- sPipeline(data=data)
# 3) reorder component planes in different ways
# 3a) directly using column-wise vectors of codebook matrix
sReorder <- sCompReorder(sMap=sMap, amplifier=2, metric="none")
# 3b) according to covariance matrix of pearson correlation of codebook matrix
sReorder <- sCompReorder(sMap=sMap, amplifier=2, metric="pearson")
# 3c) according to covariance matrix of pearson correlation of input matrix
sReorder <- sCompReorder(sMap=data, amplifier=2, metric="pearson")
```

sDistance

Function to compute the pairwise distance for a given data matrix

Description

sDistance is supposed to compute and return the distance matrix between the rows of a data matrix using a specified distance metric

Usage

```
sDistance(
data,
metric = c("pearson", "spearman", "kendall", "euclidean", "manhattan",
"cos", "mi",
"binary")
)
```


Arguments

$$
\begin{array}{ll}
\text { data } & \text { a data frame or matrix of input data } \\
\text { metric } & \text { distance metric used to calculate a symmetric distance matrix. See 'Note' below } \\
& \text { for options available }
\end{array}
$$

Value

- dist: a symmetric distance matrix of nRow x nRow, where nRow is the number of rows of input data matrix

Note
The distance metrics are supported:

- "pearson": Pearson correlation. Note that two curves that have identical shape, but different magnitude will still have a correlation of 1
- "spearman": Spearman rank correlation. As a nonparametric version of the pearson correlation, it calculates the correlation between the ranks of the data values in the two vectors (more robust against outliers)
- "kendall": Kendall tau rank correlation. Compared to spearman rank correlation, it goes a step further by using only the relative ordering to calculate the correlation. For all pairs of data points $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$, it calls a pair of points either as concordant ($N c$ in total) if $\left(x_{i}-x_{j}\right) *\left(y_{i}-y_{j}\right)>0$, or as discordant $\left(N d\right.$ in total) if $\left(x_{i}-x_{j}\right) *\left(y_{i}-y_{j}\right)<0$. Finally, it calculates gamma coefficient $(N c-N d) /(N c+N d)$ as a measure of association which is highly resistant to tied data
- "euclidean": Euclidean distance. Unlike the correlation-based distance measures, it takes the magnitude into account (input data should be suitably normalized
- "manhattan": Cityblock distance. The distance between two vectors is the sum of absolute value of their differences along any coordinate dimension
- "cos": Cosine similarity. As an uncentered version of pearson correlation, it is a measure of similarity between two vectors of an inner product space, i.e., measuring the cosine of the angle between them (using a dot product and magnitude)
- "mi": Mutual information (MI). MI provides a general measure of dependencies between variables, in particular, positive, negative and nonlinear correlations. The caclulation of $M I$ is implemented via applying adaptive partitioning method for deriving equal-probability bins (i.e., each bin contains approximately the same number of data points). The number of bins is heuristically determined (the lower bound): $1+\log 2(n)$, where n is the length of the vector. Because $M I$ increases with entropy, we normalize it to allow comparison of different pairwise clone similarities: $2 * M I /[H(x)+H(y)]$, where $H(x)$ and $H(y)$ stand for the entropy for the vector x and y, respectively
- "binary": asymmetric binary (Jaccard distance index). the proportion of bits in which the only one divided by the at least one

See Also

sDmatCluster

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) calculate distance matrix using different metric
sMap <- sPipeline(data=data)
# 2a) using "pearson" metric
dist <- sDistance(data=data, metric="pearson")
# 2b) using "cos" metric
# dist <- sDistance(data=data, metric="cos")
# 2c) using "spearman" metric
# dist <- sDistance(data=data, metric="spearman")
# 2d) using "kendall" metric
# dist <- sDistance(data=data, metric="kendall")
# 2e) using "euclidean" metric
# dist <- sDistance(data=data, metric="euclidean")
# 2f) using "manhattan" metric
# dist <- sDistance(data=data, metric="manhattan")
# 2g) using "mi" metric
# dist <- sDistance(data=data, metric="mi")
```

\# 2h) using "binary" metric
\# dist <- sDistance(data=data, metric="binary")
sDmat Function to calculate distance matrix in high-dimensional input space but according to neighborhood relationships in $2 D$ output space

Description

sDmat is supposed to calculate distance (measured in high-dimensional input space) to neighbors (defined by based on 2D output space) for each of hexagons/rectangles

Usage

sDmat(sMap, which_neigh = 1, distMeasure = c("median", "mean", "min", "max"))

Arguments

sMap	an object of class "sMap"
which_neigh	which neighbors in 2D output space are used for the calculation. By default, it sets to "1" for direct neighbors, and "2" for neighbors within neighbors no more than 2, and so on
distMeasure	distance measure used to calculate distances in high-dimensional input space

Value

- dMat: a vector with the length of nHex. It stores the distance a hexaon/rectangle is away from its output-space-defined neighbors in high-dimensional input space

Note

"which_neigh" is defined in output 2D space, but "distMeasure" is defined in high-dimensional input space

See Also

sNeighAny

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) get trained using by default setup
sMap <- sPipeline(data=data)
# 3) calculate "median" distances in INPUT space to different neighbors in 2D OUTPUT space
```

\# 3a) using direct neighbors in 2D OUTPUT space
dMat <- sDmat(sMap=sMap, which_neigh=1, distMeasure="median")
\# 3b) using no more than 2-topological neighbors in 2D OUTPUT space
\# dMat <- sDmat(sMap=sMap, which_neigh=2, distMeasure="median")

sDmatCluster Function to partition a grid map into clusters

Description

sDmatCluster is supposed to obtain clusters from a grid map. It returns an object of class "sBase".

Usage

```
    sDmatCluster(
    sMap,
    which_neigh = 1,
    distMeasure = c("mean", "median", "min", "max"),
    constraint = TRUE,
    clusterLinkage = c("average", "complete", "single", "bmh"),
    reindexSeed = c("hclust", "svd", "none")
    )
```


Arguments

sMap	an object of class "sMap"
which_neigh	which neighbors in 2D output space are used for the calculation. By default, it sets to "1" for direct neighbors, and "2" for neighbors within neighbors no more than 2, and so on
distMeasure	distance measure used to calculate distances in high-dimensional input space. It can be one of "median", "mean", "min" and "max" measures
constraint	logic whether further constraint applied. If TRUE, only consider those hexagons 1) with 2 or more neighbors; and 2) neighbors are not within minima already found (due to the same distance)
clusterLinkage	cluster linkage used to derive clusters. It can be "bmh", which accumulates a cluster just based on best-matching hexagons/rectanges but can not ensure each cluster is continuous. Instead, each cluster is continuous when using region- growing algorithm with one of "average", "complete" and "single" linkages
reindexSeed	lhe way to index seed. It can be "hclust" for reindexing seeds according to hier- that archical clustering of patterns seen in seeds, "svd" for reindexing seeds accord- ing to svd of patterns seen in seeds, or "none" for seeds being simply increased by the hexagon indexes (i.e. always in an increasing order as hexagons radiate
outwards)	

Value

an object of class "sBase", a list with following components:

- seeds: the vector to store cluster seeds, i.e., a list of local minima (in 2D output space) of distance matrix (in input space). They are represented by the indexes of hexagons/rectangles
- bases: the vector with the length of nHex to store the cluster memberships/bases, where nHex is the total number of hexagons/rectanges in the grid
- ig: an igraph object storing neighbor relations between bases, with node attributes 'name' (base), 'index', 'xcoord' and 'ycoord' (based on seeds)
- hclust: a hclust object storing tree-like relations between bases (based on seed model vectors)
- call: the call that produced this result

Note

The first item in the return "seeds" is the first cluster, whose memberships are those in the return "bases" that equals 1. The same relationship is held for the second item, and so on

See Also

sPipeline, sDmatMinima, sBMH, sNeighDirect, sDistance, visDmatCluster

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) get trained using by default setup
sMap <- sPipeline(data=data)
# 3) partition the grid map into clusters based on different criteria
# 3a) based on "bmh" criterion
# sBase <- sDmatCluster(sMap=sMap, which_neigh=1, distMeasure="median", clusterLinkage="bmh")
# 3b) using region-growing algorithm with linkage "average"
sBase <- sDmatCluster(sMap=sMap, which_neigh=1, distMeasure="median",
clusterLinkage="average")
# 4) visualise clusters/bases partitioned from the sMap
visDmatCluster(sMap,sBase)
```

sDmatMinima Function to identify local minima (in $2 D$ output space) of distance matrix (in high-dimensional input space)

Description

sDmatMinima is supposed to identify local minima of distance matrix (resulting from sDmat). The criterion of being local minima is that the distance associated with a hexagon/rectangle is always smaller than its direct neighbors (i.e., 1-neighborhood)

Usage

```
sDmatMinima(
sMap,
which_neigh = 1,
distMeasure = c("median", "mean", "min", "max"),
constraint = TRUE
)
```


Arguments

sMap	an object of class "sMap"
which_neigh	which neighbors in 2D output space are used for the calculation. By default, it sets to "1" for direct neighbors, and "2" for neighbors within neighbors no more than 2, and so on
distMeasure	distance measure used to calculate distances in high-dimensional input space. It can be one of "median", "mean", "min" and "max" measures
constraint	logic whether further constraint applied. If TRUE, only consider those hexagons 1) with 2 or more neighbors; and 2) neighbors are not within minima already found (due to the same distance)

Value

- minima: a vector to store a list of local minima (represented by the indexes of hexogans/rectangles

Note

Do not get confused by "which_neigh" and the criteria of being local minima. Both of them deal with 2D output space. However, "which_neigh" is used to assist in the calculation of distance matrix (so can be 1-neighborhood or more); instead, the criterion of being local minima is only 1-neighborhood in the strictest sense

See Also

sDmat, sNeighAny

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) get trained using by default setup
sMap <- sPipeline(data=data)
# 3) identify local minima of distance matrix based on "median" distances and direct neighbors
minima <- sDmatMinima(sMap=sMap, which_neigh=1, distMeasure="median")
```

```
sHexDist
```

Function to calculate distances between hexagons/rectangles in a $2 D$ grid

Description

sHexDist is supposed to calculate euclidian distances between each pair of hexagons/rectangles in a 2D grid of input "sTopol" or "sMap" object. It returns a symmetric matrix containing pairwise distances.

Usage

sHexDist(sObj)

Arguments

sObj
an object of class "sTopol" or "sInit" or "sMap"

Value

- dist: a symmetric matrix of nHex x nHex, containing pairwise distances, where nHex is the total number of hexagons/rectanges in the grid

Note

The return matrix has rows/columns ordered in the same order as the "coord" matrix of the input object does.

See Also

```
sTopology, sInitial
```


Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
# but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")
# 3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")
# 4) calculate distances between hexagons/rectangles in a 2D grid based on different objects
# 4a) based on an object of class "sTopol"
dist <- sHexDist(sObj=sTopol)
# 4b) based on an object of class "sMap"
dist <- sHexDist(sObj=sI)
```

sHexGrid Function to define a supra-hexagonal grid

Description

sHexGrid is supposed to define a supra-hexagonal map grid. A supra-hexagon is a giant hexagon, which seamlessly consists of smaller hexagons. Due to the symmetric nature, it can be uniquely determined by specifying the radius away from the grid centroid. This function takes input the grid radius (or the number of hexagons in the grid, but will be adjusted to meet the definition of supra-hexagon), and returns a list (see 'Value' below) containing: the grid radius, the total number of hexagons in the grid, the 2D coordinates of the grid centroid, the step for each hexogan away from the grid centroid, and the 2D coordinates of all hexagons in the grid.

Usage

sHexGrid($r=$ NULL, $n H e x=$ NULL $)$

Arguments

$r \quad$ an integer specifying the radius in a supra-hexagonal grid
nHex the number of input hexagons in the grid

Value

an object of class "sHex", a list with following components:

- r : the grid radius
- nHex: the total number of hexagons in the grid. It may differ from the input value; actually it is always no less than the input one to ensure a supra-hexagonal grid exactly formed
- centroid: the 2 D coordinates of the grid centroid
- stepCentroid: a vector with the length of nHex. It stores how many steps a hexagon is awawy from the grid centroid (' 1 ' for the centroid itself). Starting with the centroid, it orders outward. Also, for those hexagons of the same step, it orders from the rightmost in an anti-clock wise
- angleCentroid: a vector with the length of nHex. It stores the angle a hexagon is in terms of the grid centroid ('0' for the centroid itself). For those hexagons of the same step, it orders from the rightmost in an anti-clock wise
- coord: a matrix of nHex x 2 with each row specifying the 2D coordinates of a hexagon in the grid. The order of rows is the same as 'centroid' above
- call: the call that produced this result

Note
The relationships among return values:

- $n H e x=1+6 * r *(r-1) / 2$
- centroid $=\operatorname{coord}[1$,
- step Centroid $[1]=1$
- stepCentroid $[2: n H e x]=$ unlist $($ sapply $(2: r$, function $(x)(c((1+6 * x *(x-1) / 2-$ $6 *(x-1)+1):(1+6 * x *(x-1) / 2))>=1) * x))$

See Also

sPipeline

Examples

```
# The supra-hexagonal grid is exactly determined by specifying the radius.
sHex <- sHexGrid(r=2)
# The grid is determined according to the number of input hexagons (after being adjusted).
# The return res$nHex is always no less than the input one.
# It ensures a supra-hexagonal grid is exactly formed.
sHex <- sHexGrid(nHex=12)
# Ignore input nHex if r is also given
sHex <- sHexGrid(r=3, nHex=100)
# By default, r=3 if no parameters are specified
sHex <- sHexGrid()
```

sHexGridVariant Function to define a variant of a supra-hexagonal grid

Description

sHexGridVariant is supposed to define a variant of a supra-hexagonal map grid. In essence, it is the subset of the supra-hexagon.

Usage

sHexGridVariant(
$r=$ NULL,
nHex = NULL,
shape = c("suprahex", "triangle", "diamond", "hourglass", "trefoil",
"ladder",
"butterfly", "ring", "bridge")
)

Arguments

r
nHex an integer specifying the radius in a supra-hexagonal grid the number of input hexagons in the grid

Abstract

shape the grid shape, either "suprahex" for the suprahex itself, or its variants (including "triangle" for the triangle-shaped variant, "diamond" for the diamondshaped variant, "hourglass" for the hourglass-shaped variant, "trefoil" for the trefoil-shaped variant, "ladder" for the ladder-shaped variant, "butterfly" for the butterfly-shaped variant, "ring" for the ring-shaped variant, and "bridge" for the bridge-shaped variant)

Value

an object of class "sHex", a list with following components:

- r : the grid radius
- nHex: the total number of hexagons in the grid. It may differ from the input value; actually it is always no less than the input one to ensure a supra-hexagonal grid exactly formed
- centroid: the 2 D coordinates of the grid centroid
- stepCentroid: a vector with the length of nHex. It stores how many steps a hexagon is awawy from the grid centroid (' 1 ' for the centroid itself). Starting with the centroid, it orders outward. Also, for those hexagons of the same step, it orders from the rightmost in an anti-clock wise
- angleCentroid: a vector with the length of nHex. It stores the angle a hexagon is in terms of the grid centroid ('0' for the centroid itself). For those hexagons of the same step, it orders from the rightmost in an anti-clock wise
- coord: a matrix of nHex x 2 with each row specifying the 2 D coordinates of a hexagon in the grid. The order of rows is the same as 'centroid' above
- call: the call that produced this result

Note

none

See Also

```
sHexGrid
```


Examples

```
# For "supraHex" shape itself
sHex <- sHexGridVariant(r=6, shape="suprahex")
## Not run:
library(ggplot2)
#geom_polygon(color="black", fill=NA)
# For "supraHex" shape itself
sHex <- sHexGridVariant(r=6, shape="suprahex")
df_polygon <- sHexPolygon(sHex)
df_coord <- data.frame(sHex$coord, index=1:nrow(sHex$coord))
gp_suprahex <- ggplot(data=df_polygon, aes(x,y,group=index)) +
geom_polygon(aes(fill=factor(stepCentroid%%2))) +
```

```
coord_fixed(ratio=1) + theme_void() + theme(legend.position="none") +
geom_text(data=df_coord, aes(x,y,label=index), color="white", size=3) +
labs(title="suprahex (r=6; xdim=ydim=11)") +
theme(plot.title=element_text(hjust=0.5,size=8))
# For "triangle" shape
sHex <- sHexGridVariant(r=6, shape="triangle")
df_polygon <- sHexPolygon(sHex)
df_coord <- data.frame(sHex$coord, index=1:nrow(sHex$coord))
gp_triangle <- ggplot(data=df_polygon, aes(x,y,group=index)) +
geom_polygon(aes(fill=factor(stepCentroid%%2))) +
coord_fixed(ratio=1) + theme_void() + theme(legend.position="none") +
geom_text(data=df_coord, aes(x,y,label=index), color="white", size=3) +
labs(title="triangle (r=6; xdim=ydim=6)") +
theme(plot.title=element_text(hjust=0.5,size=8))
# For "diamond" shape
sHex <- sHexGridVariant(r=6, shape="diamond")
df_polygon <- sHexPolygon(sHex)
df_coord <- data.frame(sHex$coord, index=1:nrow(sHex$coord))
gp_diamond <- ggplot(data=df_polygon, aes(x,y,group=index)) +
geom_polygon(aes(fill=factor(stepCentroid%%2))) +
coord_fixed(ratio=1) + theme_void() + theme(legend.position="none") +
geom_text(data=df_coord, aes(x,y,label=index), color="white", size=3) +
labs(title="diamond (r=6; xdim=6, ydim=11)") +
theme(plot.title=element_text(hjust=0.5,size=8))
# For "hourglass" shape
sHex <- sHexGridVariant(r=6, shape="hourglass")
df_polygon <- sHexPolygon(sHex)
df_coord <- data.frame(sHex$coord, index=1:nrow(sHex$coord))
gp_hourglass <- ggplot(data=df_polygon, aes(x,y,group=index)) +
geom_polygon(aes(fill=factor(stepCentroid%%2))) +
coord_fixed(ratio=1) + theme_void() + theme(legend.position="none") +
geom_text(data=df_coord, aes(x,y,label=index), color="white", size=3) +
labs(title="hourglass (r=6; xdim=6, ydim=11)") +
theme(plot.title=element_text(hjust=0.5,size=8))
# For "trefoil" shape
sHex <- sHexGridVariant(r=6, shape="trefoil")
df_polygon <- sHexPolygon(sHex)
df_coord <- data.frame(sHex$coord, index=1:nrow(sHex$coord))
gp_trefoil <- ggplot(data=df_polygon, aes(x,y,group=index)) +
geom_polygon(aes(fill=factor(stepCentroid%%2))) +
coord_fixed(ratio=1) + theme_void() + theme(legend.position="none") +
geom_text(data=df_coord, aes(x,y,label=index), color="white", size=3) +
labs(title="trefoil (r=6; xdim=ydim=11)") +
theme(plot.title=element_text(hjust=0.5,size=8))
# For "ladder" shape
sHex <- sHexGridVariant(r=6, shape="ladder")
df_polygon <- sHexPolygon(sHex)
df_coord <- data.frame(sHex$coord, index=1:nrow(sHex$coord))
```

```
gp_ladder <- ggplot(data=df_polygon, aes(x,y,group=index)) +
geom_polygon(aes(fill=factor(stepCentroid%%2))) +
coord_fixed(ratio=1) + theme_void() + theme(legend.position="none") +
geom_text(data=df_coord, aes(x,y,label=index), color="white", size=3) +
labs(title="ladder (r=6; xdim=11, ydim=6)") +
theme(plot.title=element_text(hjust=0.5,size=8))
# For "butterfly" shape
sHex <- sHexGridVariant(r=6, shape="butterfly")
df_polygon <- sHexPolygon(sHex)
df_coord <- data.frame(sHex$coord, index=1:nrow(sHex$coord))
gp_butterfly <- ggplot(data=df_polygon, aes(x,y,group=index)) +
geom_polygon(aes(fill=factor(stepCentroid%%2))) +
coord_fixed(ratio=1) + theme_void() + theme(legend.position="none") +
geom_text(data=df_coord, aes(x,y,label=index), color="white", size=3) +
labs(title="butterfly (r=6; xdim=ydim=11)") +
theme(plot.title=element_text(hjust=0.5,size=8))
# For "ring" shape
sHex <- sHexGridVariant(r=6, shape="ring")
df_polygon <- sHexPolygon(sHex)
df_coord <- data.frame(sHex$coord, index=1:nrow(sHex$coord))
gp_ring <- ggplot(data=df_polygon, aes(x,y,group=index)) +
geom_polygon(aes(fill=factor(stepCentroid%%2))) +
coord_fixed(ratio=1) + theme_void() + theme(legend.position="none") +
geom_text(data=df_coord, aes(x,y,label=index), color="white", size=3) +
labs(title="ring (r=6; xdim=ydim=11)") +
theme(plot.title=element_text(hjust=0.5, size=8))
# For "bridge" shape
sHex <- sHexGridVariant(r=6, shape="bridge")
df_polygon <- sHexPolygon(sHex)
df_coord <- data.frame(sHex$coord, index=1:nrow(sHex$coord))
gp_bridge <- ggplot(data=df_polygon, aes(x,y,group=index)) +
geom_polygon(aes(fill=factor(stepCentroid%%2))) +
coord_fixed(ratio=1) + theme_void() + theme(legend.position="none") +
geom_text(data=df_coord, aes(x,y,label=index), color="white", size=3) +
labs(title="bridge (r=6; xdim=11, ydim=6)") +
theme(plot.title=element_text(hjust=0.5,size=8))
# combined visuals
library(gridExtra)
grid.arrange(grobs=list(gp_suprahex, gp_ring, gp_diamond, gp_trefoil,
gp_butterfly, gp_hourglass, gp_ladder, gp_bridge, gp_triangle),
layout_matrix=rbind(c(1,1,2,2,3),c(1,1,2,2,3),c(4,4,5,5,6),c(4,4,5,5,6),c(7,7,8,8,9)),
nrow=5, ncol=5)
## End(Not run)
```

sHexPolygon Function to extract polygon location per hexagon within a suprahexagonal grid

Description

sHexPolygon is supposed to extract polygon location per hexagon within a supra-hexagonal grid

Usage

sHexPolygon(sObj, area.size $=1$)

Arguments

sObj an object of class "sMap" or "sInit" or "sTopol" or "sHex"
area.size an integer or a vector specifying the area size of each hexagon

Value

a tibble of 7 columns ('index',' $x^{\prime}, ' y$ ','node','edge','stepCentroid','angleCentroid') storing polygon location per hexagon. 'node' for nodes (including n1,n2,n3,n4,n5,n6), and 'edge' for a list-column where each is a tibble with a single column 'edge' containing two rows (such as edges 'e12' and 'e16' for the node ' n 1 ').

Note

None

See Also

sHexGridVariant, sPipeline

Examples

```
sObj <- sTopology(xdim=4, ydim=4, lattice="hexa", shape="suprahex")
df_polygon <- sHexPolygon(sObj, area.size=1)
```

sInitial Function to initialise a sInit object given a topology and input data

Description

sInitial is supposed to initialise an object of class "sInit" given a topology and input data. As a matter of fact, it initialises the codebook matrix (in input high-dimensional space). The return object inherits the topology information (i.e., a "sTopol" object from sTopology), along with initialised codebook matrix and method used.

Usage

sInitial(data, sTopol, init $=c(" l i n e a r ", ~ " u n i f o r m ", ~ " s a m p l e "), ~ s e e d=$ 825)

Arguments

data	a data frame or matrix of input data
sTopol	an object of class "sTopol" (see sTopology)
init	an initialisation method. It can be one of "uniform", "sample" and "linear" ini- tialisation methods
seed	an integer specifying the seed

Value

an object of class "sInit", a list with following components:

- $n H e x$: the total number of hexagons/rectanges in the grid
- xdim: x-dimension of the grid
- ydim: y-dimension of the grid
- r : the hypothetical radius of the grid
- lattice: the grid lattice
- shape: the grid shape
- coord: a matrix of nHex x 2 , with each row corresponding to the coordinates of a hexagon/rectangle in the 2D map grid
- init: an initialisation method
- codebook: a codebook matrix of nHex x ncol(data), with each row corresponding to a prototype vector in input high-dimensional space
- call: the call that produced this result

Note

The initialisation methods include:

- "uniform": the codebook matrix is uniformly initialised via randomly taking any values within the interval [min, max] of each column of input data
- "sample": the codebook matrix is initialised via randomly sampling/selecting input data
- "linear": the codebook matrix is linearly initialised along the first two greatest eigenvectors of input data

See Also

```
sTopology
```


Examples

\# 1) generate an iid normal random matrix of 100×10
data <- matrix ($\operatorname{rnorm}(100 * 10$, mean=0, $s d=1)$, nrow=100, ncol=10)
\# 2) from this input matrix, determine $n H e x=5 * \operatorname{sqr}($ nrow(data)) $=50$,
\# but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")
\# 3) initialise the codebook matrix using different mehtods
\# 3a) using "uniform" method
sI_uniform <- sInitial(data=data, sTopol=sTopol, init="uniform")
\# 3b) using "sample" method
\# sI_sample <- sInitial(data=data, sTopol=sTopol, init="sample")
\# 3c) using "linear" method
\# sI_linear <- sInitial(data=data, sTopol=sTopol, init="linear")
sMapOverlay Function to overlay additional data onto the trained map for viewing the distribution of that additional data

Description

sMapOverlay is supposed to overlay additional data onto the trained map for viewing the distribution of that additional data. It returns an object of class "sMap". It is realised by first estimating the hit histogram weighted by the neighborhood kernel, and then calculating the distribution of the additional data over the map (similarly weighted by the neighborhood kernel). The final overlaid distribution of additional data is normalised by the hit histogram.

Usage

sMapOverlay(sMap, data = NULL, additional)

Arguments

sMap	an object of class "sMap"
data	a data frame or matrix of input data or NULL
additional	a numeric vector or numeric matrix used to overlay onto the trained map. It must have the length (if being vector) or row number (if matrix) being equal to the number of rows in input data

Value

an object of class "sMap", a list with following components:

- $n H e x$: the total number of hexagons/rectanges in the grid
- xdim: x-dimension of the grid
- ydim: y-dimension of the grid
- r : the hypothetical radius of the grid
- lattice: the grid lattice
- shape: the grid shape
- coord: a matrix of nHex x 2, with rows corresponding to the coordinates of all hexagons/rectangles in the 2D map grid
- ig: the igraph object
- polygon: a tibble of 7 columns ('x','y','index','node','edge','stepCentroid','angleCentroid') storing polygon location per hexagon
- init: an initialisation method
- neighKernel: the training neighborhood kernel
- codebook: a codebook matrix of nHex x ncol(additional), with rows corresponding to overlaid vectors
- hits: a vector of nHex, each element meaning that a hexagon/rectangle contains the number of input data vectors being hit wherein
- mqe: the mean quantization error for the "best" BMH
- data: an input data matrix
- response: a tibble of 3 columns ('did' for rownames of input data matrix, 'index', and 'qerr' (quantization error; the distance to the "best" BMH))
- call: the call that produced this result

Note

Weighting by neighbor kernel is to avoid rigid overlaying by only focusing on the best-matching map nodes as there may exist several closest best-matching nodes for an input data vector.

See Also

sPipeline, sBMH, sHexDist, visHexMulComp

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
colnames(data) <- paste(rep('S',10), seq(1:10), sep="")
# 2) get trained using by default setup
sMap <- sPipeline(data=data)
# 3) overlay additional data onto the trained map
# here using the first two columns of the input "data" as "additional"
# codebook in "sOverlay" is the same as the first two columns of codebook in "sMap"
sOverlay <- sMapOverlay(sMap=sMap, data=data, additional=data[,1:2])
# 4) viewing the distribution of that additional data
visHexMulComp(sOverlay)
```

Function to calculate any neighbors for each hexagon/rectangle in a grid

Description

sNeighAny is supposed to calculate any neighbors for each hexagon/rectangle in a regular 2 D grid. It returns a matrix with rows for the self, and columns for its any neighbors.

Usage

sNeighAny(sObj)

Arguments

sObj an object of class "sTopol" or "sInit" or "sMap"

Value

- aNeigh: a matrix of nHex x nHex, containing distance info in terms of any neighbors, where nHex is the total number of hexagons/rectanges in the grid

Note

The return matrix has rows for the self, and columns for its neighbors. The non-zeros mean the distance away from its neighbors, and the zeros for the self-self. It has rows/columns ordered in the same order as the "coord" matrix of the input object does.

See Also

sNeighDirect

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
# but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")
# 3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")
# 4) calculate any neighbors based on different objects
# 4a) based on an object of class "sTopol"
aNeigh <- sNeighAny(sObj=sTopol)
# 4b) based on an object of class "sMap"
# aNeigh <- sNeighAny(sObj=sI)
```

sNeighDirect \quad| Function to calculate direct neighbors for each hexagon/rectangle in |
| :--- |
| a grid |

Description

sNeighDirect is supposed to calculate direct neighbors for each hexagon/rectangle in a regular 2D grid. It returns a matrix with rows for the self, and columns for its direct neighbors.

Usage

sNeighDirect(sObj)

Arguments

sObj an object of class "sTopol" or "sInit" or "sMap"

Value

- dNeigh: a matrix of nHex x nHex, containing presence/absence info in terms of direct neighbors, where $n H e x$ is the total number of hexagons/rectanges in the grid

Note

The return matrix has rows for the self, and columns for its direct neighbors. The "1" means the presence of direct neighbors, " 0 " for the absence. It has rows/columns ordered in the same order as the "coord" matrix of the input object does.

See Also

sHexDist

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
# but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")
# 3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")
# 4) calculate direct neighbors based on different objects
# 4a) based on an object of class "sTopol"
dNeigh <- sNeighDirect(sObj=sTopol)
# 4b) based on an object of class "sMap"
# dNeigh <- sNeighDirect(sObj=sI)
```

Function to setup the pipeline for completing ab initio training given the input data

Description

sPipeline is supposed to finish ab inito training for the input data. It returns an object of class "sMap".

Usage

sPipeline(
data,
xdim $=$ NULL,
ydim = NULL,
nHex = NULL,
lattice = c("hexa", "rect"),
shape = c("suprahex", "sheet", "triangle", "diamond", "hourglass",
"trefoil",
"ladder", "butterfly", "ring", "bridge"),
scaling = 5,
init = c("linear", "uniform", "sample"),
seed $=825$,
algorithm = c("batch", "sequential"),
alphaType = c("invert", "linear", "power"),
neighKernel = c("gaussian", "bubble", "cutgaussian", "ep", "gamma"),
finetuneSustain = FALSE,
verbose = TRUE
)

Arguments

data

a data frame or matrix of input data
xdim an integer specifying x-dimension of the grid
ydim an integer specifying y-dimension of the grid
nHex the number of hexagons/rectangles in the grid
lattice the grid lattice, either "hexa" for a hexagon or "rect" for a rectangle
shape the grid shape, either "suprahex" for a supra-hexagonal grid or "sheet" for a hexagonal/rectangle sheet. Also supported are suprahex's variants (including "triangle" for the triangle-shaped variant, "diamond" for the diamond-shaped variant, "hourglass" for the hourglass-shaped variant, "trefoil" for the trefoilshaped variant, "ladder" for the ladder-shaped variant, "butterfly" for the butterflyshaped variant, "ring" for the ring-shaped variant, and "bridge" for the bridgeshaped variant)
$\left.\begin{array}{ll}\text { scaling } & \begin{array}{l}\text { the scaling factor. Only used when automatically estimating the grid dimension } \\ \text { from input data matrix. By default, it is 5 (big map). Other suggested values: } 1 \\ \text { for small map, and } 3 \text { for median map } \\ \text { an initialisation method. It can be one of "uniform", "sample" and "linear" ini- } \\ \text { tialisation methods }\end{array} \\ \text { init } & \text { an integer specifying the seed } \\ \text { the training algorithm. It can be one of "sequential" and "batch" algorithm. By } \\ \text { default, it uses 'batch' algorithm purely because of its fast computations (prob- } \\ \text { ably also without the compromise of accuracy). However, it is highly recom- } \\ \text { mended not to use 'batch' algorithm if the input data contain lots of zeros; it is } \\ \text { algorithm } \\ \text { in this context. If much computation resource is at hand, it is alwasy safe to use }\end{array}\right\}$

Value

an object of class "sMap", a list with following components:

- nHex: the total number of hexagons/rectanges in the grid
- xdim: x-dimension of the grid
- ydim: y-dimension of the grid
- r : the hypothetical radius of the grid
- lattice: the grid lattice
- shape: the grid shape
- coord: a matrix of nHex x 2, with rows corresponding to the coordinates of all hexagons/rectangles in the 2D map grid
- ig: the igraph object
- polygon: a tibble of 7 columns ('x','y','index','node','edge','stepCentroid','angleCentroid') storing polygon location per hexagon
- init: an initialisation method
- neighKernel: the training neighborhood kernel
- codebook: a codebook matrix of nHex x ncol(data), with rows corresponding to prototype vectors in input high-dimensional space
- hits: a vector of nHex, each element meaning that a hexagon/rectangle contains the number of input data vectors being hit wherein
- mqe: the mean quantization error for the "best" BMH
- data: an input data matrix (with rownames and colnames added if NULL)
- response: a tibble of 3 columns ('did' for rownames of input data matrix, 'index', and 'qerr' (quantization error; the distance to the "best" BMH))
- call: the call that produced this result

Note

The pipeline sequentially consists of:

- i) sTopology used to define the topology of a grid (with "suprahex" shape by default) according to the input data;
- ii) sInitial used to initialise the codebook matrix given the pre-defined topology and the input data (by default using "uniform" initialisation method);
- iii) sTrainology and sTrainSeq or sTrainBatch used to get the grid map trained at both "rough" and "finetune" stages. If instructed, sustain the "finetune" training until the mean quantization error does get worse;
- iv) sBMH used to identify the best-matching hexagons/rectangles (BMH) for the input data, and these response data are appended to the resulting object of "sMap" class.

References

Hai Fang and Julian Gough. (2014) supraHex: an R/Bioconductor package for tabular omics data analysis using a supra-hexagonal map. Biochemical and Biophysical Research Communications, 443(1), 285-289.

See Also

sTopology, sInitial, sTrainology, sTrainSeq, sTrainBatch, sBMH, visHexMulComp

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
colnames(data) <- paste(rep('S',10), seq(1:10), sep="")
## Not run:
# 2) get trained using by default setup but with different neighborhood kernels
# 2a) with "gaussian" kernel
sMap <- sPipeline(data=data, neighKernel="gaussian")
# 2b) with "bubble" kernel
# sMap <- sPipeline(data=data, neighKernel="bubble")
# 2c) with "cutgaussian" kernel
# sMap <- sPipeline(data=data, neighKernel="cutgaussian")
# 2d) with "ep" kernel
# sMap <- sPipeline(data=data, neighKernel="ep")
# 2e) with "gamma" kernel
# sMap <- sPipeline(data=data, neighKernel="gamma")
```

```
    # 3) visualise multiple component planes of a supra-hexagonal grid
    visHexMulComp(sMap, colormap="jet", ncolors=20, zlim=c(-1,1),
    gp=grid::gpar(cex=0.8))
    # 4) get trained using by default setup but using the shape "butterfly"
    sMap <- sPipeline(data=data, shape="trefoil",
    algorithm=c("batch","sequential")[2])
    visHexMulComp(sMap, colormap="jet", ncolors=20, zlim=c(-1,1),
    gp=grid::gpar(cex=0.8))
    library(ggraph)
    ggraph(sMap$ig, layout=sMap$coord) + geom_edge_link() +
    geom_node_circle(aes(r=0.4),fill='white') + coord_fixed(ratio=1) +
    geom_node_text(aes(label=name), size=2)
    ## End(Not run)
```

 sTopology Function to define the topology of a map grid

Description

sTopology is supposed to define the topology of a 2D map grid. The topological shape can be either a supra-hexagonal grid or a hexagonal/rectangle sheet. It returns an object of "sTopol" class, containing: the total number of hexagons/rectangles in the grid, the grid xy-dimensions, the grid lattice, the grid shape, and the 2D coordinates of all hexagons/rectangles in the grid. The 2D coordinates can be directly used to measure distances between any pair of lattice hexagons/rectangles.

Usage

```
sTopology(
    data = NULL,
    xdim = NULL,
    ydim = NULL,
    nHex = NULL,
    lattice = c("hexa", "rect"),
    shape = c("suprahex", "sheet", "triangle", "diamond", "hourglass",
    "trefoil",
    "ladder", "butterfly", "ring", "bridge"),
    scaling = 5
    )
```


Arguments

data a data frame or matrix of input data
xdim an integer specifying x-dimension of the grid
ydim an integer specifying y-dimension of the grid

nHex	the number of hexagons/rectangles in the grid
lattice	the grid lattice, either "hexa" for a hexagon or "rect" for a rectangle
shape	the grid shape, either "suprahex" for a supra-hexagonal grid or "sheet" for a hexagonal/rectangle sheet. Also supported are suprahex's variants (including "triangle" for the triangle-shaped variant, "diamond" for the diamond-shaped variant, "hourglass" for the hourglass-shaped variant, "trefoil" for the trefoil- shaped variant, "ladder" for the ladder-shaped variant, "butterfly" for the butterfly- shaped variant, "ring" for the ring-shaped variant, and "bridge" for the bridge- shaped variant)
scaling	the scaling factor. Only used when automatically estimating the grid dimension from input data matrix. By default, it is 5 (big map). Other suggested values: 1 for small map, and 3 for median map

Value

an object of class "sTopol", a list with following components:

- nHex: the total number of hexagons/rectanges in the grid. It is not always the same as the input nHex (if any); see "Note" below for the explaination
- xdim: x-dimension of the grid
- ydim: y-dimension of the grid
- r: the hypothetical radius of the grid
- lattice: the grid lattice
- shape: the grid shape
- coord: a matrix of nHex x 2 , with each row corresponding to the coordinates of a hexagon/rectangle in the 2D map grid
- ig: the igraph object
- call: the call that produced this result

Note

The output of nHex depends on the input arguments and grid shape:

- How the input parameters are used to determine nHex is taken priority in the following order: "xdim \& ydim" > "nHex" > "data"
- If both of xdim and ydim are given, $n H e x=x \operatorname{dim} * y d i m$ for the "sheet" shape, $r=$ $(\min (x \operatorname{dim}, y d i m)+1) / 2$ for the "suprahex" shape
- If only data is input, $n H e x=\operatorname{scaling} * \operatorname{sqrt}($ dlen $)$, where dlen is the number of rows of the input data, and scaling can be 5 (big map), 3 (median map) and 1 (normal map)
- With nHex in hand, it depends on the grid shape:
- For "sheet" shape, xy-dimensions of sheet grid is determined according to the square root of the two biggest eigenvalues of the input data
- For "suprahex" shape, see sHexGrid for calculating the grid radius r. The xdim (and ydim) is related to r via $x \operatorname{dim}=2 * r-1$

See Also

sHexGrid, visHexMapping

Examples

```
# For "suprahex" shape
sTopol <- sTopology(xdim=3, ydim=3, lattice="hexa", shape="suprahex")
# Error: "The suprahex shape grid only allows for hexagonal lattice"
# sTopol <- sTopology(xdim=3, ydim=3, lattice="rect", shape="suprahex")
# For "sheet" shape with hexagonal lattice
sTopol <- sTopology(xdim=3, ydim=3, lattice="hexa", shape="sheet")
# For "sheet" shape with rectangle lattice
sTopol <- sTopology(xdim=3, ydim=3, lattice="rect", shape="sheet")
# By default, nHex=19 (i.e., r=3; xdim=ydim=5) for "suprahex" shape
sTopol <- sTopology(shape="suprahex")
# By default, xdim=ydim=5 (i.e., nHex=25) for "sheet" shape
sTopol <- sTopology(shape="sheet")
# Determine the topolopy of a supra-hexagonal grid based on input data
# 1) generate an iid normal random matrix of 100x10
data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
# but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")
# sTopol <- sTopology(data=data, lattice="hexa", shape="trefoil")
# do visualisation
visHexMapping(sTopol,mappingType="indexes")
## Not run:
library(ggplot2)
# another way to do visualisation
df_polygon <- sHexPolygon(sTopol)
df_coord <- data.frame(sTopol$coord, index=1:nrow(sTopol$coord))
gp <- ggplot(data=df_polygon, aes(x,y,group=index)) +
geom_polygon(aes(fill=factor(stepCentroid%%2))) +
coord_fixed(ratio=1) + theme_void() + theme(legend.position="none") +
geom_text(data=df_coord, aes(x,y,label=index), color="white")
library(ggraph)
ggraph(sTopol$ig, layout=sTopol$coord) + geom_edge_link() +
geom_node_circle(aes(r=0.4),fill='white') + coord_fixed(ratio=1) +
geom_node_text(aes(label=name), size=2)
## End(Not run)
```


Description

sTrainBatch is supposed to perform batch training algorithm. It requires three inputs: a "sMap" or "sInit" object, input data, and a "sTrain" object specifying training environment. The training is implemented iteratively, but instead of choosing a single input vector, the whole input matrix is used. In each training cycle, the whole input matrix first land in the map through identifying the corresponding winner hexagon/rectangle (BMH), and then the codebook matrix is updated via updating formula (see "Note" below for details). It returns an object of class "sMap".

Usage

sTrainBatch(sMap, data, sTrain, verbose = TRUE)

Arguments

sMap	an object of class "sMap" or "sInit"
data	a data frame or matrix of input data
sTrain	an object of class "sTrain"
verbose	logical to indicate whether the messages will be displayed in the screen. By default, it sets to TRUE for display

Value

an object of class "sMap", a list with following components:

- nHex : the total number of hexagons/rectanges in the grid
- xdim: x-dimension of the grid
- ydim: y-dimension of the grid
- r : the hypothetical radius of the grid
- lattice: the grid lattice
- shape: the grid shape
- coord: a matrix of $n H e x x 2$, with each row corresponding to the coordinates of a hexagon/rectangle in the 2D map grid
- ig: the igraph object
- init: an initialisation method
- neighKernel: the training neighborhood kernel
- codebook: a codebook matrix of nHex x ncol(data), with each row corresponding to a prototype vector in input high-dimensional space
- call: the call that produced this result

Note

Updating formula is: $m_{i}(t+1)=\frac{\sum_{j=1}^{d l e n} h_{w i}(t) x_{j}}{\sum_{j=1}^{d d_{10 n}} h_{w i}(t)}$, where

- t denotes the training time/step
- x_{j} is an input vector j from the input data matrix (with dlen rows in total)
- i and w stand for the hexagon/rectangle i and the winner BMH w, respectively
- $m_{i}(t+1)$ is the prototype vector of the hexagon i at time $t+1$
- $h_{w i}(t)$ is the neighborhood kernel, a non-increasing function of i) the distance $d_{w i}$ between the hexagon/rectangle i and the winner BMH w, and ii) the radius δ_{t} at time t. There are five kernels available:
- For "gaussian" kernel, $h_{w i}(t)=e^{-d_{w i}^{2} /\left(2 * \delta_{t}^{2}\right)}$
- For "cutguassian" kernel, $h_{w i}(t)=e^{-d_{w i}^{2} /\left(2 * \delta_{t}^{2}\right)} *\left(d_{w i} \leq \delta_{t}\right)$
- For "bubble" kernel, $h_{w i}(t)=\left(d_{w i} \leq \delta_{t}\right)$
- For "ep" kernel, $h_{w i}(t)=\left(1-d_{w i}^{2} / \delta_{t}^{2}\right) *\left(d_{w i} \leq \delta_{t}\right)$
- For "gamma" kernel, $h_{w i}(t)=1 / \Gamma\left(d_{w i}^{2} /\left(4 * \delta_{t}^{2}\right)+2\right)$

See Also

sTrainology, visKernels

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
# but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")
# 3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")
# 4) define trainology at "rough" stage
sT_rough <- sTrainology(sMap=sI, data=data, stage="rough")
# 5) training at "rough" stage
sM_rough <- sTrainBatch(sMap=sI, data=data, sTrain=sT_rough)
# 6) define trainology at "finetune" stage
sT_finetune <- sTrainology(sMap=sI, data=data, stage="finetune")
# 7) training at "finetune" stage
sM_finetune <- sTrainBatch(sMap=sM_rough, data=data, sTrain=sT_rough)
```

sTrainology Function to define trainology (training environment)

Description

sTrainology is supposed to define the train-ology (i.e., the training environment/parameters). The trainology here refers to the training algorithm, the training stage, the stage-specific parameters (alpha type, initial alpha, initial radius, final radius and train length), and the training neighbor kernel used. It returns an object of class "sTrain".

Usage

```
sTrainology(
sMap,
data,
algorithm = c("batch", "sequential"),
stage = c("rough", "finetune", "complete"),
alphaType = c("invert", "linear", "power"),
neighKernel = c("gaussian", "bubble", "cutgaussian", "ep", "gamma")
)
```


Arguments

sMap	an object of class "sMap" or "sInit"
data	a data frame or matrix of input data
algorithm	the training algorithm. It can be one of "sequential" and "batch" algorithm the training stage. The training can be achieved using two stages (i.e., "rough" and "finetune") or one stage only (i.e., "complete")
alphaType the alpha type. It can be one of "invert", "linear" and "power" alpha types neighKernel the training neighbor kernel. It can be one of "gaussian", "bubble", "cutgaus- sian", "ep" and "gamma" kernels.	

Value

an object of class "sTrain", a list with following components:

- algorithm: the training algorithm
- stage: the training stage
- alphaType: the alpha type
- alphaInitial: the initial alpha
- radiusInitial: the initial radius
- radiusFinal: the final radius
- neighKernel: the neighbor kernel
- call: the call that produced this result

Note

Training stage-specific parameters:

- "radiusInitial": it depends on the grid shape and training stage
- For "sheet" shape: it equals $\max (1, \operatorname{ceiling}(\max (x \operatorname{dim}, y d i m) / 8))$ at "rough" or "complete" stage, and $\max (1$, ceiling $(\max (x d i m, y d i m) / 32))$ at "finetune" stage
- For "suprahex" shape: it equals $\max (1, \operatorname{ceiling}(r / 2))$ at "rough" or "complete" stage, and $\max (1$, ceiling $(r / 8))$ at "finetune" stage
- "radiusFinal": it depends on the training stage
- At "rough" stage, it equals radiusInitial/4
- At "finetune" or "complete" stage, it equals 1
- "trainLength": how many times the whole input data are set for training. It depends on the training stage and training algorithm
- At "rough" stage, it equals $\max (1,10 *$ trainDepth $)$
- At "finetune" stage, it equals $\max (1,40 *$ trainDepth $)$
- At "complete" stage, it equals $\max (1,50 * \operatorname{train} D e p t h)$
- When using "batch" algorithm and the trainLength equals 1 according to the above equation, the trainLength is forced to be 2 unless radiusInitial equals radiusFinal
- Where trainDepth is the training depth, defined as $n H e x / d l e n$, i.e., how many hexagons/rectanges are used per the input data length (here dlen refers to the number of rows)

See Also

sInitial

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
# but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")
# 3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")
# 4) define trainology at different stages
# 4a) define trainology at "rough" stage
sT_rough <- sTrainology(sMap=sI, data=data, stage="rough")
# 4b) define trainology at "finetune" stage
sT_finetune <- sTrainology(sMap=sI, data=data, stage="finetune")
# 4c) define trainology using "complete" stage
sT_complete <- sTrainology(sMap=sI, data=data, stage="complete")
```


Description

sTrainSeq is supposed to perform sequential training algorithm. It requires three inputs: a "sMap" or "sInit" object, input data, and a "sTrain" object specifying training environment. The training is implemented iteratively, each training cycle consisting of: i) randomly choose one input vector; ii) determine the winner hexagon/rectangle (BMH) according to minimum distance of codebook matrix to the input vector; ii) update the codebook matrix of the BMH and its neighbors via updating formula (see "Note" below for details). It also returns an object of class "sMap".

Usage

sTrainSeq(sMap, data, sTrain, seed $=825$, verbose $=$ TRUE)

Arguments

sMap	an object of class "sMap" or "sInit"
data	a data frame or matrix of input data
sTrain	an object of class "sTrain"
seed	an integer specifying the seed verbose
logical to indicate whether the messages will be displayed in the screen. By default, it sets to TRUE for display	

Value

an object of class "sMap", a list with following components:

- $n H e x$: the total number of hexagons/rectanges in the grid
- xdim: x-dimension of the grid
- ydim: y-dimension of the grid
- r: the hypothetical radius of the grid
- lattice: the grid lattice
- shape: the grid shape
- coord: a matrix of nHex x 2 , with each row corresponding to the coordinates of a hexagon/rectangle in the 2D map grid
- ig: the igraph object
- init: an initialisation method
- neighKernel: the training neighborhood kernel
- codebook: a codebook matrix of nHex x ncol(data), with each row corresponding to a prototype vector in input high-dimensional space
- call: the call that produced this result

Note

Updating formula is: $m_{i}(t+1)=m_{i}(t)+\alpha(t) * h_{w i}(t) *\left[x(t)-m_{i}(t)\right]$, where

- t denotes the training time/step
- i and w stand for the hexagon/rectangle i and the winner BMH w, respectively
- $x(t)$ is an input vector randomly choosen (from the input data) at time t
- $m_{i}(t)$ and $m_{i}(t+1)$ are respectively the prototype vectors of the hexagon i at time t and $t+1$
- $\alpha(t)$ is the learning rate at time t. There are three types of learning rate functions:
- For "linear" function, $\alpha(t)=\alpha_{0} *(1-t / T)$
- For "power" function, $\alpha(t)=\alpha_{0} *\left(0.005 / \alpha_{0}\right)^{t / T}$
- For "invert" function, $\alpha(t)=\alpha_{0} /(1+100 * t / T)$
- Where α_{0} is the initial learing rate (typically, $\alpha_{0}=0.5$ at "rough" stage, $\alpha_{0}=0.05$ at "finetune" stage), T is the length of training time/step (often being set to input data length, i.e., the total number of rows)
- $h_{w i}(t)$ is the neighborhood kernel, a non-increasing function of i) the distance $d_{w i}$ between the hexagon/rectangle i and the winner BMH w, and ii) the radius δ_{t} at time t. There are five kernels available:
- For "gaussian" kernel, $h_{w i}(t)=e^{-d_{w i}^{2} /\left(2 * \delta_{t}^{2}\right)}$
- For "cutguassian" kernel, $h_{w i}(t)=e^{-d_{w i}^{2} /\left(2 * \delta_{t}^{2}\right)} *\left(d_{w i} \leq \delta_{t}\right)$
- For "bubble" kernel, $h_{w i}(t)=\left(d_{w i} \leq \delta_{t}\right)$
- For "ep" kernel, $h_{w i}(t)=\left(1-d_{w i}^{2} / \delta_{t}^{2}\right) *\left(d_{w i} \leq \delta_{t}\right)$
- For "gamma" kernel, $h_{w i}(t)=1 / \Gamma\left(d_{w i}^{2} /\left(4 * \delta_{t}^{2}\right)+2\right)$

See Also

```
sTrainology, visKernels
```


Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) from this input matrix, determine nHex=5*sqrt(nrow(data))=50,
# but it returns nHex=61, via "sHexGrid(nHex=50)", to make sure a supra-hexagonal grid
sTopol <- sTopology(data=data, lattice="hexa", shape="suprahex")
# 3) initialise the codebook matrix using "uniform" method
sI <- sInitial(data=data, sTopol=sTopol, init="uniform")
# 4) define trainology at "rough" stage
sT_rough <- sTrainology(sMap=sI, data=data, algorithm="sequential",
stage="rough")
# 5) training at "rough" stage
sM_rough <- sTrainSeq(sMap=sI, data=data, sTrain=sT_rough)
# 6) define trainology at "finetune" stage
```

```
sT_finetune <- sTrainology(sMap=sI, data=data, algorithm="sequential",
stage="finetune")
# 7) training at "finetune" stage
sM_finetune <- sTrainSeq(sMap=sM_rough, data=data, sTrain=sT_rough)
```

sWriteData Function to write out the best-matching hexagons and/or cluster bases in terms of data

Description

sWriteData is supposed to write out the best-matching hexagons and/or cluster bases in terms of data.

Usage

sWriteData(sMap, data, sBase $=$ NULL, filename $=$ NULL, keep.data $=$ FALSE)

Arguments

sMap	an object of class "sMap" or a codebook matrix
data	a data frame or matrix of input data
sBase	an object of class "sBase"
filename	a character string naming a filename
keep.data	logical to indicate whether or not to also write out the input data. By default, it sets to false for not keeping it. It is highly expensive to keep the large data sets

Value

a data frame with following components:

- ID: ID for data. It inherits the rownames of data (if exists). Otherwise, it is sequential integer values starting with 1 and ending with dlen, the total number of rows of the input data
- Hexagon_index: the index for best-matching hexagons
- Qerr_distance: the quantification error (distance) for best-matching hexagons
- Cluster_base: optional, it is only appended when sBase is given. It stores the cluster memberships/bases
- data: optional, it is only appended when keep.data is true

Note

If "filename" is not NULL, a tab-delimited text file will be also written out. If "sBase" is not NULL and comes from the "sMap" partition, then cluster bases are also appended. if "keep.data" is true, the data will be part of output.

See Also

sBMH

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
# 2) get trained using by default setup
sMap <- sPipeline(data=data)
# 3) write data's BMH hitting the trained map
output <- sWriteData(sMap=sMap, data=data, filename="sData_output.txt")
# 4) partition the grid map into cluster bases
sBase <- sDmatCluster(sMap=sMap, which_neigh=1,
distMeasure="median", clusterLinkage="average")
# 5) write data's BMH and cluster bases
output <- sWriteData(sMap=sMap, data=data, sBase=sBase,
filename="sData_base_output.txt")
```

visColoralpha Function to add transparent (alpha) into colors

Description

visColoralpha is supposed to add transparent (alpha) into colors.

Usage

visColoralpha(col, alpha)

Arguments

col
input colors. It can be vector of R color specifications, such as a color name (as listed by 'colors()), a hexadecimal string of the form "\#rrggbb" or "\#rrggbbaa"
alpha numeric vector of values in the range $[0,1]$ for alpha transparency channel $(0$ means transparent and 1 means opaque)

Value

a vector of colors (after transparent being added)

Note

none

See Also

visColormap

Examples

```
# 1) define "blue-white-red" colormap
palette.name <- visColormap(colormap="bwr")
# 2) use the return function "palette.name" to generate 10 colors spanning "bwr"
col <- palette.name(10)
    # 3) add transparent (alpha=0.5)
    cols <- visColoralpha(col, alpha=0.5)
```

visColorbar Function to define a colorbar

Description

visColorbar is supposed to define a colorbar

Usage

visColorbar (
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"),
ncolors = 40,
zlim = c(0, 1),
gp = grid::gpar()
)

Arguments

colormap short name for the colormap. It can be one of "jet" (jet colormap), "bwr" (blue-white-red colormap), "gbr" (green-black-red colormap), "wyr" (white-yellowred colormap), "br" (black-red colormap), "yr" (yellow-red colormap), "wb" (white-black colormap), and "rainbow" (rainbow colormap, that is, red-yellow-green-cyan-blue-magenta). Alternatively, any hyphen-separated HTML color names, e.g. "blue-black-yellow", "royalblue-white-sandybrown", "darkgreen-white-darkviolet". A list of standard color names can be found in http:// html-color-codes.info/color-names
ncolors the number of colors specified
zlim the minimum and maximum z values for which colors should be plotted, defaulting to the range of the finite values of z . Each of the given colors will be used to color an equispaced interval of this range. The midpoints of the intervals cover the range, so that values just outside the range will be plotted
an object of class gpar, typically the output from a call to the function gpar (i.e., a list of graphical parameter settings)

Value

invisibly

Note

none

See Also

visColormap, visHexMulComp, visCompReorder

Examples

```
# draw "blue-white-red" colorbar
visColorbar(colormap="bwr")
```

```
    visColormap Function to define a colormap
```


Description

visColormap is supposed to define a colormap. It returns a function, which will take an integer argument specifying how many colors interpolate the given colormap.

Usage

visColormap(
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb", "heat",
"terrain", "topo", "cm")
)

Arguments

colormap short name for the colormap. It can also be a function of 'colorRampPalette'

Value

- palette name: a function that takes an integer argument for generating that number of colors interpolating the given sequence

Note

The input colormap includes:

- "jet": jet colormap
- "bwr": blue-white-red
- "gbr": green-black-red
- "wyr": white-yellow-red
- "br": black-red
- "yr": yellow-red
- "wb": white-black
- "rainbow": rainbow colormap, that is, red-yellow-green-cyan-blue-magenta
- Alternatively, any hyphen-separated HTML color names, e.g. "blue-black-yellow", "royalblue-white-sandybrown", "darkblue-lightblue-lightyellow-darkorange", "darkgreen-white-darkviolet", "darkgreen-lightgreen-lightpink-darkred". A list of standard color names can be found in http://html-color-codes.info/color-names

See Also

```
visColoralpha
```


Examples

\# 1) define "blue-white-red" colormap
palette.name <- visColormap(colormap="bwr")
\# 2) use the return function "palette.name" to generate 10 colors spanning "bwr" palette. name(10)

```
visCompReorder
```

Function to visualise multiple component planes reorded within a sheet-shape rectangle grid

Description

visCompReorder is supposed to visualise multiple component planes reorded within a sheet-shape rectangle grid

Usage

visCompReorder(
sMap,
sReorder,
margin $=\operatorname{rep}(0.1,4)$,
height $=7$,
title. rotate $=0$,

```
title.xy = c(0.45, 1),
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"),
ncolors = 40,
zlim = NULL,
border.color = "transparent",
gp = grid::gpar(),
newpage = TRUE
)
```


Arguments

sMap sReorder margin	an object of class "sMap" an object of class "sReorder" meight
margins as units of length 4 or 1	
title.rotate	
title.xy	a numeric value specifying the height of device the rotation of the title the coordinates of the title
short name for the colormap. It can be one of "jet" (jet colormap), "bwr" (blue-	
white-red colormap), "gbr" (green-black-red colormap), "wyr" (white-yellow-	
red colormap), "br" (black-red colormap), "yr" (yellow-red colormap), "wb"	
(white-black colormap), and "rainbow" (rainbow colormap, that is, red-yellow-	
green-cyan-blue-magenta). Alternatively, any hyphen-separated HTML color	
names, e.g. "blue-black-yellow", "royalblue-white-sandybrown", "darkgreen-	

Value

invisible

Note

none

See Also

visVp, visHexComp, visColorbar, sCompReorder

Examples

```
# 1) generate data with an iid matrix of 1000 x 9
data <- cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=0.5,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3))
colnames(data) <- c("S1","S1","S1","S2","S2","S2","S3","S3","S3")
# 2) sMap resulted from using by default setup
sMap <- sPipeline(data=data, shape=c("suprahex","trefoil")[2])
# 3) reorder component planes
sReorder <- sCompReorder(sMap=sMap, amplifier=2, metric="none")
# 4) visualise multiple component planes reorded within a sheet-shape rectangle grid
visCompReorder(sMap=sMap, sReorder=sReorder, margin=rep(0.1,4),
height=7,
title.rotate=0, title.xy=c(0.45, 1), colormap="gbr", ncolors=10,
zlim=c(-1,1),
border.color="transparent")
```

visDmatCluster Function to visualise clusters/bases partitioned from a suprahexagonal grid

Description

visDmatCluster is supposed to visualise clusters/bases partitioned from a supra-hexagonal grid

Usage

```
visDmatCluster(
sMap,
sBase,
height \(=7\),
margin \(=\operatorname{rep}(0.1,4)\),
area.size = 1,
gp = grid::gpar(cex = 0.8, font = 2, col = "black"),
border.color = "transparent",
fill.color = NULL,
lty = 1,
lwd = 1,
lineend = "round",
linejoin = "round",
colormap = c("rainbow", "jet", "bwr", "gbr", "wyr", "br", "yr", "wb"),
clip = c("on", "inherit", "off"),
newpage = TRUE
)
```


Arguments

sMap	an object of class "sMap"
sBase	an object of class "sBase"
height	a numeric value specifying the height of device
margin	margins as units of length 4 or 1
area.size	an inteter or a vector specifying the area size of each hexagon
gp	an object of class "gpar". It is the output from a call to the function "gpar" (i.e., a list of graphical parameter settings)
border.color	the border color for each hexagon
fill.color	the filled color for each hexagon
lty line type for each hexagon. 0 for 'blank', 1 for 'solid', 2 for 'dashed', 3 for	

Value

invisible

Note

none

See Also

Examples

\# 1) generate an iid normal random matrix of 100×10
data <- matrix ($\operatorname{rnorm}(100 * 10$, mean=0, $s d=1)$, nrow=100, ncol=10)
\#\# Not run:
\# 2) get trained using by default setup
sMap <- sPipeline(data=data)
\# 3) partition the grid map into clusters using region-growing algorithm
sBase <- sDmatCluster(sMap=sMap, which_neigh=1,
distMeasure="median", clusterLinkage="average")
\# 4) visualise clusters/bases partitioned from the sMap
visDmatCluster(sMap, sBase)
\# 4a) also, the area size is proportional to the hits
visDmatCluster (sMap,sBase, area.size=log2(sMap\$hits+1))
\# 4b) also, the area size is inversely proportional to the map distance
dMat <- sDmat(sMap)
visDmatCluster(sMap,sBase, area.size=-1*log2(dMat))
\# 5) customise the fill color and line type
my_color <-
visColormap(colormap="PapayaWhip-pink-Tomato")(length(sBase\$seeds))[sBase\$bases]
my_lty <- (sBase\$bases \%\% 2)
visDmatCluster(sMap,sBase, fill.color=my_color, lty=my_lty, border.color="black", lwd=2, area.size=0.9)
\# also, the area size is inversely proportional to the map distance
visDmatCluster (sMap,sBase, fill.color=my_color, lty=my_lty, border.color="black", lwd=2, area.size=-1*log2(dMat))
\#\# End(Not run)
visDmatHeatmap Function to visualise gene clusters/bases partitioned from a suprahexagonal grid using heatmap

Description

visDmatHeatmap is supposed to visualise gene clusters/bases partitioned from a supra-hexagonal grid using heatmap

Usage

visDmatHeatmap(
sMap,
data,
sBase,
base.color = "rainbow",
base.separated.arg = NULL,

```
base.legend.location = c("none", "bottomleft", "bottomright", "bottom",
"left",
"topleft", "top", "topright", "right", "center"),
reorderRow = c("none", "hclust", "svd"),
keep.data = FALSE,
...
)
```


Arguments

sMap	
data	
sBase	an object of class "sMap" or a codebook matrix
base.color	a data frame or matrix of input data an object of class "sBase" short name for the colormap used to encode bases (in row side bar). It can be one of "jet" (jet colormap), "bwr" (blue-white-red colormap), "gbr" (green- black-red colormap), "wyr" (white-yellow-red colormap), "br" (black-red col- ormap), "yr" (yellow-red colormap), "wb" (white-black colormap), and "rain- bow" (rainbow colormap, that is, red-yellow-green-cyan-blue-magenta). Alter- natively, any hyphen-separated HTML color names, e.g. "blue-black-yellow", "royalblue-white-sandybrown", "darkgreen-white-darkviolet". A list of stan- dard color names can be found in http://html-color-codes.info/color-names
base.separated. arg	
a list of main parameters used for styling bar separated lines. See 'Note' below	
for details on the parameters	

Value

a data frame with following components:

- ID: ID for data. It inherits the rownames of data (if exists). Otherwise, it is sequential integer values starting with 1 and ending with dlen, the total number of rows of the input data
- Hexagon_index: the index for best-matching hexagons
- Cluster_base: optional, it is only appended when sBase is given. It stores the cluster memberships/bases
- data: optional, it is only appended when keep.data is true

Note: the returned data has rows in the same order as visualised in the heatmap

Note

A list of parameters in "base.separated.arg":

- "lty": the line type. Line types can either be specified as an integer ($0=$ blank, $1=$ solid (default), $2=$ dashed, $3=$ dotted, $4=$ dotdash, $5=$ longdash, $6=$ twodash) or as one of the character strings "blank","solid","dashed","dotted","dotdash","longdash","twodash", where "blank" uses 'invisible lines' (i.e., does not draw them)
- "lwd": the line width
- "col": the line color

See Also

> sDmatCluster, visHeatmapAdv

Examples

```
# 1) generate an iid normal random matrix of 100x10
data <- matrix( rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
## Not run:
# 2) get trained using by default setup
sMap <- sPipeline(data=data)
# 3) partition the grid map into clusters using region-growing algorithm
sBase <- sDmatCluster(sMap=sMap, which_neigh=1,
distMeasure="median", clusterLinkage="average")
# 4) heatmap visualisation
output <- visDmatHeatmap(sMap, data, sBase,
base.legend.location="bottomleft", labRow=NA)
## End(Not run)
```

visHeatmap

Function to visualise input data matrix using heatmap

Description

visHeatmap is supposed to visualise input data matrix using heatmap. Note: this heatmap displays matrix in a bottom-to-top direction

Usage

visHeatmap(
data,
scale = c("none", "row", "column"),
row.metric = c("none", "pearson", "spearman", "kendall", "euclidean",
"manhattan",

```
"cos", "mi"),
row.method = c("ward", "single", "complete", "average", "mcquitty",
"median",
"centroid"),
column.metric = c("none", "pearson", "spearman", "kendall",
"euclidean", "manhattan",
"cos", "mi"),
column.method = c("ward", "single", "complete", "average", "mcquitty",
"median",
"centroid"),
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"),
ncolors = 64,
zlim = NULL,
row.cutree = NULL,
row.colormap = c("rainbow"),
column.cutree = NULL,
column.colormap = c("rainbow"),
...
)
```


Arguments

data an input gene-sample data matrix used for heatmap
scale a character indicating when the input matrix should be centered and scaled. It can be one of "none" (no scaling), "row" (being scaled in the row direction), "column" (being scaled in the column direction)
row.metric distance metric used to calculate the distance metric between rows. It can be one of "none" (i.e. no dendrogram between rows), "pearson", "spearman", "kendall", "euclidean", "manhattan", "cos" and "mi". See details at http://suprahex. r-forge.r-project.org/sDistance.html
row.method the agglomeration method used to cluster rows. This should be one of "ward", "single", "complete", "average", "mcquitty", "median" or "centroid". See ’Note’ below for details
column.metric distance metric used to calculate the distance metric between columns. It can be one of "none" (i.e. no dendrogram between rows), "pearson", "spearman", "kendall", "euclidean", "manhattan", "cos" and "mi". See details at http:// suprahex.r-forge.r-project.org/sDistance.html
column.method the agglomeration method used to cluster columns. This should be one of "ward", "single", "complete", "average", "mcquitty", "median" or "centroid". See 'Note' below for details
colormap short name for the colormap. It can be one of "jet" (jet colormap), "bwr" (blue-white-red colormap), "gbr" (green-black-red colormap), "wyr" (white-yellowred colormap), "br" (black-red colormap), "yr" (yellow-red colormap), "wb" (white-black colormap), and "rainbow" (rainbow colormap, that is, red-yellow-green-cyan-blue-magenta). Alternatively, any hyphen-separated HTML color names, e.g. "blue-black-yellow", "royalblue-white-sandybrown", "darkgreen-white-darkviolet". A list of standard color names can be found in http:// html-color-codes.info/color-names

ncolors	the number of colors specified over the colormap zlim the minimum and maximum z/pattern values for which colors should be plotted, defaulting to the range of the finite values of z . Each of the given colors will be used to color an equispaced interval of this range. The midpoints of the intervals cover the range, so that values just outside the range will be plotted an integer scalar specifying the desired number of groups being cut from the row dendrogram. Note, this optional is only enabled when the row dengrogram is built
row.cutree	
short name for the colormap to color-code the row groups (i.e. sidebar colors	
used to annotate the rows)	

Value

invisible

Note

The clustering methods are provided:

- "ward": Ward's minimum variance method aims at finding compact, spherical clusters
- "single": The single linkage method (which is closely related to the minimal spanning tree) adopts a 'friends of friends' clustering strategy
- "complete": The complete linkage method finds similar clusters
- "average","mcquitty","median","centroid": These methods can be regarded as aiming for clusters with characteristics somewhere between the single and complete link methods. Two methods "median" and "centroid" are not leading to a monotone distance measure, or equivalently the resulting dendrograms can have so called inversions (which are hard to interpret)

See Also

visHeatmap

Examples

```
# 1) generate data with an iid matrix of 100 x 9
data <- cbind(matrix(rnorm(100*3,mean=0,sd=1), nrow=100, ncol=3),
matrix(rnorm(100*3,mean=0.5,sd=1), nrow=100, ncol=3),
matrix(rnorm(100*3,mean=-0.5,sd=1), nrow=100, ncol=3))
colnames(data) <- c("S1","S1","S1","S2","S2","S2", "S3","S3", "S3")
# 2) prepare colors for the column sidebar
```

```
lvs <- unique(colnames(data))
lvs_color <- visColormap(colormap="rainbow")(length(lvs))
my_ColSideColors <- sapply(colnames(data), function(x)
lvs_color[x==lvs])
# 3) heatmap with row dendrogram (with 10 color-coded groups)
visHeatmap(data, row.metric="euclidean", row.method="average",
colormap="gbr", zlim=c(-2,2),
ColSideColors=my_ColSideColors, row.cutree=10, row.colormap="jet",
labRow=NA)
```


Description

visHeatmapAdv is supposed to visualise input data matrix using advanced heatmap. It allows for adding multiple sidecolors in both columns and rows. Besides, the sidecolor can be automatically added via cutting histogram into groups. Note: this heatmap displays matrix in a top-to-bottom direction

Usage

visHeatmapAdv(
data,
scale = c("none", "row", "column"),
Rowv = TRUE,
Colv = TRUE,
dendrogram = c("both", "row", "column", "none"),
dist.metric = c("euclidean", "pearson", "spearman", "kendall",
"manhattan", "cos",
"mi"),
linkage.method = c("complete", "ward", "single", "average", "mcquitty",
"median",
"centroid"),
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"),
ncolors = 64,
zlim = NULL,
RowSideColors = NULL,
row.cutree = NULL,
row.colormap = c("jet"),
ColSideColors = NULL,
column.cutree $=$ NULL,
column.colormap = c("jet"),
...
)

Arguments

$\left.\begin{array}{ll}\text { data } & \begin{array}{l}\text { an input gene-sample data matrix used for heatmap } \\ \text { a character indicating when the input matrix should be centered and scaled. It } \\ \text { can be one of "none" (no scaling), "row" (being scaled in the row direction), } \\ \text { "column" (being scaled in the column direction) }\end{array} \\ \text { determines if and how the row dendrogram should be reordered. By default, it } \\ \text { is TRUE, which implies dendrogram is computed and reordered based on row } \\ \text { means. If NULL or FALSE, then no dendrogram is computed and no reordering } \\ \text { is done. If a dendrogram, then it is used "as-is", ie without any reordering. If } \\ \text { a vector of integers, then dendrogram is computed and reordered based on the } \\ \text { order of the vector } \\ \text { determines if and how the column dendrogram should be reordered. Has the } \\ \text { options as the Rowv argument above and additionally when x is a square matrix, }\end{array}\right\}$
linkage.method the agglomeration method used to cluster/linkages columns (or rows). This should be one of "ward", "single", "complete", "average", "mcquitty", "median" or "centroid". See 'Note' below for details
colormap short name for the colormap. It can be one of "jet" (jet colormap), "bwr" (blue-white-red colormap), "gbr" (green-black-red colormap), "wyr" (white-yellowred colormap), "br" (black-red colormap), "yr" (yellow-red colormap), "wb" (white-black colormap), and "rainbow" (rainbow colormap, that is, red-yellow-green-cyan-blue-magenta). Alternatively, any hyphen-separated HTML color names, e.g. "blue-black-yellow", "royalblue-white-sandybrown", "darkgreen-white-darkviolet". A list of standard color names can be found in http:// html-color-codes.info/color-names
ncolors the number of colors specified over the colormap
zlim the minimum and maximum z/patttern values for which colors should be plotted, defaulting to the range of the finite values of z . Each of the given colors will be used to color an equispaced interval of this range. The midpoints of the intervals cover the range, so that values just outside the range will be plotted
RowSideColors NULL or a matrix of "numRowsidebars" X nrow(x), where "numRowsidebars" stands for the number of sidebars annotating rows of x. This matrix contains the color names for vertical sidebars. By default, it sets to NULL. In this case, sidebars in rows can still be enabled by cutting the row dendrogram into several clusters (see the next two parameters)
row.cutree an integer scalar specifying the desired number of groups being cut from the row dendrogram. Note, this optional is only enabled when the ColSideColors is NULL

```
row.colormap
short name for the colormap to color-code the row groups (i.e. sidebar colors used to annotate the rows)
ColSideColors NULL or a matrix of ncol(x) X "numColsidebars", where "numColsidebars" stands for the number of sidebars annotating the columns of x . This matrix contains the color names for horizontal sidebars. By default, it sets to NULL. In this case, sidebars in columns can still be enabled by cutting the column dendrogram into several clusters (see the next two parameters)
column. cutree an integer scalar specifying the desired number of groups being cut from the column dendrogram. Note, this optional is only enabled when the column dengrogram is built
```

```
column.colormap
```

column.colormap
short name for the colormap to color-code the column groups (i.e. sidebar colors used to annotate the columns)
additional graphic parameters. For most parameters, please refer to https:// www.rdocumentation.org/packages/gplots/topics/heatmap. 2. For example, the parameters "srtRow" and "srtCol" to control the angle of row/column labels (in degrees from horizontal: 45 degrees for the column, 0 degrees for the row, by default), i.e. string rotation. The parameters "offsetRow" and "offsetCol" to indicate the number of character-width spaces to place between row/column labels and the edge of the plotting region. Unique to this function, there are two parameters "RowSideWidth" and RowSideLabelLocation, to respectively indicate the fraction of the row side width and the location (either bottom or top) of the row side labelling; the other two parameters "ColSideHeight" and "ColSideLabelLocation" for the column side height and the location (either left or right) of the column side labelling; and two parameters "RowSideBox" and "ColSideBox" to indicate whether there are boxes outside.

```

\section*{Value}
invisible

\section*{Note}

The clustering/linkage methods are provided:
- "ward": Ward's minimum variance method aims at finding compact, spherical clusters
- "single": The single linkage method (which is closely related to the minimal spanning tree) adopts a 'friends of friends' clustering strategy
- "complete": The complete linkage method finds similar clusters
- "average","mcquitty","median","centroid": These methods can be regarded as aiming for clusters with characteristics somewhere between the single and complete link methods. Two methods "median" and "centroid" are not leading to a monotone distance measure, or equivalently the resulting dendrograms can have so called inversions (which are hard to interpret)

See Also

\section*{Examples}
\# 1) generate data with an iid matrix of \(100 \times 9\)
data <- cbind(matrix (rnorm(100*3, mean=0, sd=1), nrow=100, ncol=3),
matrix (rnorm(100*3, mean=0.5,sd=1), nrow=100, ncol=3),
matrix (rnorm(100*3, mean=-0.5,sd=1), nrow=100, ncol=3))
colnames(data) <-
c("S1_R1", "S1_R2", "S1_R3", "S2_R1", "S2_R2", "S2_R3", "S3_R1", "S3_R2", "S3_R3")
\# 2) heatmap after clustering both rows and columns
\# 2a) shown with row and column dendrograms
visHeatmapAdv(data, dendrogram="both", colormap="gbr", zlim=c(-2,2),
KeyValueName="log2(Ratio)",
add.expr=abline(v=(1:(ncol(data)+1))-0.5, col="white"),
lmat=rbind \((c(4,3), c(2,1))\), lhei=c \((1,5), \operatorname{lwid}=c(1,3))\)
\# 2b) shown with row dendrogram only
visHeatmapAdv(data, dendrogram="row", colormap="gbr", zlim=c(-2,2))
\# 2c) shown with column dendrogram only
visHeatmapAdv(data, dendrogram="column", colormap="gbr", zlim=c(-2,2))
\# 3) heatmap after only clustering rows (with 2 color-coded groups)
visHeatmapAdv(data, Colv=FALSE, colormap="gbr", zlim=c(-2,2),
row.cutree=2, row.colormap="jet", labRow=NA)
\# 4) prepare colors for the column sidebar
\# color for stages (S1-S3)
stages <- sub("_.*","", colnames(data))
sta_lvs <- unique(stages)
sta_color <- visColormap(colormap="rainbow")(length(sta_lvs))
col_stages <- sapply(stages, function(x) sta_color[x==sta_lvs])
\# color for replicates (R1-R3)
replicates <- sub(".*_","", colnames(data))
rep_lvs <- unique(replicates)
rep_color <- visColormap(colormap="rainbow")(length(rep_lvs))
col_replicates <- sapply(replicates, function(x) rep_color[x==rep_lvs])
\# combine both color vectors
ColSideColors <- cbind(col_stages,col_replicates)
colnames(ColSideColors) <- c("Stages", "Replicates")
\# 5) heatmap without clustering on rows and columns but with the two sidebars in columns
visHeatmapAdv(data, Rowv=FALSE, Colv=FALSE, colormap="gbr",
zlim=c \((-2,2)\),
density.info="density", tracecol="yellow", ColSideColors=ColSideColors, ColSideHeight=0.5, ColSideLabelLocation="right")
\# 6) legends
legend(0,0.8, legend=rep_lvs, col=rep_color, lty=1, lwd=5, cex=0.6, box.col="transparent", horiz=FALSE)
legend(0,0.6, legend=sta_lvs, col=sta_color, lty=1, lwd=5, cex=0.6, box.col="transparent", horiz=FALSE)

\section*{visHexAnimate Function to animate multiple component planes of a supra-hexagonal} grid

\section*{Description}
visHexAnimate is supposed to animate multiple component planes of a supra-hexagonal grid. The output can be a pdf file containing a list of frames/images, a mp4 video file or a gif file. To support video output file, the software 'ffmpeg' must be first installed (also put its path into the system PATH variable; see Note). To support gif output file, the software 'ImageMagick' must be first installed (also put its path into the system PATH variable; see Note).

\section*{Usage}
```

visHexAnimate(
sMap,
which.components = NULL,
filename = "visHexAnimate",
filetype = c("pdf", "mp4", "gif"),
image.type = c("jpg", "png"),
sec_per_frame = 1,
margin = rep(0.1, 4),
height = 7,
title.rotate = 0,
title.xy = c(0.45, 1),
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"),
ncolors = 40,
zlim = NULL,
border.color = "transparent",
gp = grid::gpar()
)

```

\section*{Arguments}
sMap an object of class "sMap"
which. components
an integer vector specifying which compopnets will be visualised. By default, it is NULL meaning all components will be visualised
filename the without-extension part of the name of the output file. By default, it is 'visHexAnimate'
filetype the type of the output file, i.e. the extension of the output file name. It can be one of either 'pdf' for the pdf file, 'mp4' for the mp4 video file, 'gif' for the gif file
image.type the type of the image files temporarily generated. It can be one of either 'jpg' or 'png'. These temporary image files are used for producing mp4/gif output file. The reason doing so is to accommodate that sometimes only one of image types is supported so that you can choose the right one
\begin{tabular}{|c|c|}
\hline sec_per_frame & a numeric value specifying how long (seconds) it takes to stream a frame/image. This argument only works when producing mp4 video or gif file. \\
\hline margin & margins as units of length 4 or 1 \\
\hline height & a numeric value specifying the height of device \\
\hline title.rotate & the rotation of the title \\
\hline title.xy & the coordinates of the title \\
\hline colormap & short name for the colormap. It can be one of "jet" (jet colormap), "bwr" (blue-white-red colormap), "gbr" (green-black-red colormap), "wyr" (white-yellowred colormap), "br" (black-red colormap), "yr" (yellow-red colormap), "wb" (white-black colormap), and "rainbow" (rainbow colormap, that is, red-yellow-green-cyan-blue-magenta). Alternatively, any hyphen-separated HTML color names, e.g. "blue-black-yellow", "royalblue-white-sandybrown", "darkgreen-white-darkviolet". A list of standard color names can be found in http:// html-color-codes.info/color-names \\
\hline ncolors & the number of colors specified \\
\hline zlim & the minimum and maximum z values for which colors should be plotted, defaulting to the range of the finite values of z . Each of the given colors will be used to color an equispaced interval of this range. The midpoints of the intervals cover the range, so that values just outside the range will be plotted \\
\hline border.color & the border color for each hexagon \\
\hline gp & an object of class gpar, typically the output from a call to the function gpar (i.e., a list of graphical parameter settings) \\
\hline
\end{tabular}

\section*{Value}

If specifying the output file name (see argument 'filename' above), the output file is either 'filename.pdf' or 'filename.mp4' or 'filename.gif' in the current working directory. If no output file name specified, by default the output file is either 'visHexAnimate.pdf' or 'visHexAnimate.mp4' or 'visHexAnimate.gif'

\section*{Note}

When producing mp4 video, this function requires the installation of the software 'ffmpeg' at https://www.ffmpeg.org. Shell command lines for ffmpeg installation in Terminal (for both Linux and Mac) are:
- 1) wget -0 ffmpeg.tar.gz http://www.ffmpeg.org/releases/ffmpeg-2.7.1.tar.gz
- 2) mkdir \(\sim / f f m p e g \mid t a r x v f z f f m p e g . t a r . g z-C \sim / f f m p e g--s t r i p-c o m p o n e n t s=1\)
- 3) cd ffmpeg
- 4a) \# Assuming you want installation with a ROOT (sudo) privilege: ./configure --disable-yasm
- 4b) \# Assuming you want local installation without ROOT (sudo) privilege:
. /configure --disable-yasm --prefix=\$HOME/ffmpeg
-5) make
- 6) make install
- 7) \# add the system PATH variable to your ~/.bash_profile file if you follow 4b) route: export PATH=\$HOME/ffmpeg:\$PATH
- 8) \# make sure ffmpeg has been installed successfully:
ffmpeg -h
When producing gif file, this function requires the installation of the software 'ImageMagick' at http://www.imagemagick.org. Shell command lines for ImageMagick installation in Terminal are:
- 1) wget http://www.imagemagick.org/download/ImageMagick.tar.gz
- 2) mkdir ~/ImageMagick | tar xvzf ImageMagick.tar.gz -C ~/ImageMagick --strip-components=1
- 3) cd ImageMagick
- 4) ./configure --prefix=\$HOME/ImageMagick
- 5) make
- 6) make install
- 7) \# add the system PATH variable to your ~/.bash_profile file.

For Linux:
export MAGICK_HOME=\$HOME/ImageMagick
export PATH=\$MAGICK_HOME/bin:\$PATH
export LD_LIBRARY_PATH=\$\{LD_LIBRARY_PATH:+\$LD_LIBRARY_PATH:\}\$MAGICK_HOME/lib
For Mac:
export MAGICK_HOME=\$HOME/ImageMagick
export PATH=\$MAGICK_HOME/bin:\$PATH
export DYLD_LIBRARY_PATH=\$MAGICK_HOME/lib/
- 8a) \# check configuration: convert-list configure
- 8b) \# check image format supported: identify-list format
- Tips:

Prior to 4), please make sure libjpeg and libpng are installed. If NOT, for Mac try this: brew install libjpeg libpng
To check whether ImageMagick does work, please get additional information from:
identify -list format
convert-list configure
On details, please refer to http://www.imagemagick.org/script/advanced-unix-installation. php

\section*{See Also}
visHexMulComp

\section*{Examples}
```


1) generate data with an iid matrix of 1000 x 3

data <- cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=0.5,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3))

```
```

colnames(data) <- c("S1","S1","S1","S2","S2","S2", "S3","S3", "S3")

Not run:

2) sMap resulted from using by default setup

sMap <- sPipeline(data=data)

3) animate sMap

output as a pdf file

visHexAnimate(sMap, filename="visHexAnimate", filetype="pdf")

output as a mp4 file

visHexAnimate(sMap, filename="visHexAnimate", filetype="mp4")

output as a gif file

visHexAnimate(sMap, filename="visHexAnimate", filetype="gif")

End(Not run)

```
visHexBarplot

Function to visualise codebook matrix using barplot for all hexagons or a specific one

\section*{Description}
visHexBarplot is supposed to visualise codebook matrix using barplot for all hexagons or a specific one

\section*{Usage}
```

 visHexBarplot(
 sObj,
 which.hexagon = NULL,
 which.hexagon.highlight = NULL,
 height = 7,
 margin = rep(0.1, 4),
 colormap = c("customized", "bwr", "jet", "gbr", "wyr", "br", "yr",
 "rainbow", "wb"),
 customized.color = "red",
 zeropattern.color = "gray",
 gp = grid::gpar(cex = 0.7, font = 1, col = "black"),
 bar.text.cex = 0.8,
 bar.text.srt = 90,
 newpage = TRUE
)
    ```

\section*{Arguments}
sObj
an object of class "sMap" or "sTopol" or "sInit"
which.hexagon the integer specifying which hexagon to display. If NULL, all hexagons will be visualised
```

which.hexagon.highlight
an integer vector specifying which hexagons are labelled. If NULL, all hexagons
will be labelled
height a numeric value specifying the height of device
margin margins as units of length 4 or 1
colormap short name for the predifined colormap, and "customized" for custom input (see
the next 'customized.color'). The predifined colormap can be one of "jet" (jet
colormap), "bwr" (blue-white-red colormap), "gbr" (green-black-red colormap),
"wyr" (white-yellow-red colormap), "br" (black-red colormap), "yr" (yellow-red
colormap), "wb" (white-black colormap), and "rainbow" (rainbow colormap,
that is, red-yellow-green-cyan-blue-magenta). Alternatively, any hyphen-separated
HTML color names, e.g. "blue-black-yellow", "royalblue-white-sandybrown",
"darkgreen-white-darkviolet". A list of standard color names can be found in
http://html-color-codes.info/color-names
customized.color
the customized color for pattern visualisation
zeropattern.color
the color for zero horizental line
gp an object of class "gpar". It is the output from a call to the function "gpar" (i.e.,
a list of graphical parameter settings)
bar.text.cex a numerical value giving the amount by which bar text should be magnified
relative to the default (i.e., 1)
bar.text.srt a numerical value giving the angle by which bar text should be orientated
newpage logical to indicate whether to open a new page. By default, it sets to true for
opening a new page

```

\section*{Value}
invisible

\section*{Note}
none

\section*{See Also}
sPipeline, visColormap

\section*{Examples}
```


1) generate data with an iid matrix of 1000 x 9

data <- cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=0.5,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3))
colnames(data) <- c("S1","S1","S1","S2","S2","S2","S3","S3", "S3")

2) sMap resulted from using by default setup

sMap <- sPipeline(data=data)

```
```


3) plot codebook patterns using different types

3a) for all hexagons

visHexBarplot(sMap)

3b) only for the first hexagon

visHexBarplot(sMap, which.hexagon=1)

```
visHexComp

Function to visualise a component plane of a supra-hexagonal grid

\section*{Description}
visHexComp is supposed to visualise a supra-hexagonal grid in the context of viewport
```

Usage
visHexComp(
sMap,
comp,
margin = rep(0.6, 4),
area.size = 1,
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"),
ncolors = 40,
zlim = c(0, 1),
border.color = "transparent",
newpage = TRUE
)

```

\section*{Arguments}
\begin{tabular}{ll} 
sMap & an object of class "sMap" \\
comp & a component/column of codebook matrix from an object "sMap" \\
margin & margins as units of length 4 or 1 \\
area.size & \begin{tabular}{l} 
an inteter or a vector specifying the area size of each hexagon \\
colormap \\
short name for the colormap. It can be one of "jet" (jet colormap), "bwr" (blue- \\
white-red colormap), "gbr" (green-black-red colormap), "wyr" (white-yellow- \\
red colormap), "br" (black-red colormap), "yr" (yellow-red colormap), "wb" \\
(white-black colormap), and "rainbow" (rainbow colormap, that is, red-yellow- \\
green-cyan-blue-magenta). Alternatively, any hyphen-separated HTML color \\
\\
names, e.g. "blue-black-yellow", "royalblue-white-sandybrown", "darkgreen- \\
white-darkviolet". A list of standard color names can be found in http: // \\
html-color-codes. info/color-names
\end{tabular} \\
ncolors & \begin{tabular}{l} 
the number of colors specified \\
the minimum and maximum z values for which colors should be plotted, de-
\end{tabular} \\
faulting to the range of the finite values of z. Each of the given colors will be \\
used to color an equispaced interval of this range. The midpoints of the intervals
\end{tabular}
\begin{tabular}{ll} 
border.color & the border color for each hexagon \\
newpage & a logical to indicate whether or not to open a new page
\end{tabular}

Value
invisible

\section*{Note}
none

\section*{See Also}
visColormap, visHexGrid

\section*{Examples}
\# 1) generate an iid normal random matrix of \(100 \times 10\) data <- matrix( rnorm (100*10, mean=0, sd=1), nrow=100, ncol=10) colnames(data) <- paste(rep('S',10), seq(1:10), sep="")
\# 2) sMap resulted from using by default setup sMap <- sPipeline(data=data)
\# 3) visualise the first component plane with a supra-hexagonal grid visHexComp(sMap, comp=sMap\$codebook[,1], colormap="jet", ncolors=100, zlim=c(-1,1))
visHexGrid Function to visualise a supra-hexagonal grid

\section*{Description}
visHexGrid is supposed to visualise a supra-hexagonal grid

\section*{Usage}
```

visHexGrid(
hbin,
area.size = 1,
border.color = NULL,
fill.color = NULL,
lty = 1,
lwd = 1,
lineend = "round",
linejoin = "round"
)

```

\section*{Arguments}
\begin{tabular}{ll} 
hbin & an object of class "hexbin" \\
area.size & an inteter or a vector specifying the area size of each hexagon \\
border.color & the border color for each hexagon \\
fill.color & \begin{tabular}{l} 
the filled color for each hexagon \\
lty
\end{tabular} \\
\begin{tabular}{ll} 
the line type for each hexagon. 0 for 'blank', 1 for 'solid', 2 for 'dashed', 3 for \\
'dotted', 4 for 'dotdash', 5 for 'longdash', 6 for 'twodash'
\end{tabular} \\
lwd & the line width for each hexagon \\
lineend & the line end style for each hexagon. It can be one of 'round', 'butt' and 'square' \\
linejoin & the line join style for each hexagon. It can be one of 'round', 'mitre' and 'bevel'
\end{tabular}

\section*{Value}
invisible

\section*{Note}
none

\section*{See Also}
visHexComp

\section*{Examples}
```


1) generate an iid normal random matrix of 100x10

data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
colnames(data) <- paste(rep('S',10), seq(1:10), sep="")

2) sMap resulted from using by default setup

sMap <- sPipeline(data=data)

3) create an object of "hexbin" class from sMap

dat <- data.frame(sMap$coord)
xdim <- sMap$xdim
ydim <- sMap$ydim
hbin <- hexbin::hexbin(dat$x, dat\$y, xbins=xdim-1,
shape=sqrt(0.75)*ydim/xdim)

4) visualise hbin object

vp <- hexbin::hexViewport(hbin)
visHexGrid(hbin)

```
visHexMapping
visHexMapping
Function to visualise various mapping items within a supra-hexagonal grid

\section*{Description}
visHexMapping is supposed to visualise various mapping items within a supra-hexagonal grid

\section*{Usage}
```

visHexMapping(
sObj,
mappingType = c("indexes", "hits", "dist", "antidist", "bases",
"customized"),
labels = NULL,
height = 7,
margin = rep(0.1, 4),
area.size = 1,
gp = grid::gpar(cex = 0.7, font = 1, col = "black"),
border.color = NULL,
fill.color = "transparent",
lty = 1,
lwd = 1,
lineend = "round",
linejoin = "round",
clip = c("on", "inherit", "off"),
newpage = TRUE
)

```

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline sObj & an object of class "sMap" or "sInit" or "sTopol" \\
\hline mappingType & the mapping type, can be "indexes", "hits", "dist", "antidist", "bases", and "customized" \\
\hline labels & NULL or a vector with the length of nHex \\
\hline height & a numeric value specifying the height of device \\
\hline margin & margins as units of length 4 or 1 \\
\hline area.size & an inteter or a vector specifying the area size of each hexagon \\
\hline gp & an object of class "gpar". It is the output from a call to the function "gpar" (i.e., a list of graphical parameter settings) \\
\hline border.color & the border color for each hexagon \\
\hline fill.color & the filled color for each hexagon \\
\hline lty & the line type for each hexagon. 0 for 'blank', 1 for 'solid', 2 for 'dashed', 3 for 'dotted', 4 for 'dotdash', 5 for 'longdash', 6 for 'twodash' \\
\hline
\end{tabular}
\begin{tabular}{ll} 
lwd & the line width for each hexagon \\
lineend & the line end style for each hexagon. It can be one of 'round', 'butt' and 'square' \\
linejoin & the line join style for each hexagon. It can be one of 'round', 'mitre' and 'bevel' \\
clip & \begin{tabular}{l} 
either "on" for clipping to the extent of this viewport, "inherit" for inheriting the \\
clipping region from the parent viewport, or "off" to turn clipping off altogether
\end{tabular} \\
newpage & \begin{tabular}{l} 
logical to indicate whether to open a new page. By default, it sets to true for \\
opening a new page
\end{tabular}
\end{tabular}

\section*{Value}
invisible

\section*{Note}

The mappingType includes:
- "indexes": the index of hexagons in a supra-hexagonal grid
- "hits": the number of input data vectors hitting the hexagons
- "dist": distance (in high-dimensional input space) to neighbors (defined in 2D output space)
- "antidist": the oppose version of "dist"
- "bases": clusters partitioned from the sMap
- "customized": displaying input "labels"

\section*{See Also}
sDmat, sDmatCluster, visHexGrid

\section*{Examples}
```


1) generate data with an iid matrix of 1000 x 9

data <- cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=0.5,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3))
colnames(data) <- c("S1","S1","S1","S2","S2","S2","S3","S3", "S3")

2) sMap resulted from using by default setup

sMap <- sPipeline(data=data)

3) visualise supported mapping items within a supra-hexagonal grid

3a) for indexes of hexagons

visHexMapping(sMap, mappingType="indexes", fill.color="transparent")

3b) for the number of input data vectors hitting the hexagons

visHexMapping(sMap, mappingType="hits", fill.color=NULL)

3c) for distance (in high-dimensional input space) to neighbors (defined in 2D output space)

visHexMapping(sMap, mappingType="dist")

3d) for clusters/bases partitioned from the sMap

visHexMapping(sMap, mappingType="bases")

```
```

 visHexMulComp
    ```

Function to visualise multiple component planes of a supra-hexagonal grid

\section*{Description}
visHexMulComp is supposed to visualise multiple component planes of a supra-hexagonal grid

\section*{Usage}
```

visHexMulComp(
sMap,
which.components = NULL,
rect.grid = NULL,
margin = rep(0.1, 4),
height = 7,
title.rotate = 0,
title.xy = c(0.45, 1),
colormap = c("bwr", "jet", "gbr", "wyr", "br", "yr", "rainbow", "wb"),
ncolors = 40,
zlim = NULL,
border.color = "transparent",
gp = grid::gpar(),
newpage = TRUE
)

```

\section*{Arguments}
```

 sMap an object of class "sMap"
    ```
which. components
an integer vector specifying which compopnets will be visualised. By default, it is NULL meaning all components will be visualised
rect.grid a vector specifying the number of rows and columns for a rectangle grid wherein the component planes are placed. By defaul, it is NULL (decided on according to the number of component planes that will be visualised)
margin margins as units of length 4 or 1
height a numeric value specifying the height of device
title. rotate the rotation of the title
title.xy the coordinates of the title
colormap short name for the colormap. It can be one of "jet" (jet colormap), "bwr" (blue-white-red colormap), "gbr" (green-black-red colormap), "wyr" (white-yellowred colormap), "br" (black-red colormap), "yr" (yellow-red colormap), "wb" (white-black colormap), and "rainbow" (rainbow colormap, that is, red-yellow-green-cyan-blue-magenta). Alternatively, any hyphen-separated HTML color
names, e.g. "blue-black-yellow", "royalblue-white-sandybrown", "darkgreen-white-darkviolet". A list of standard color names can be found in http:// html-color-codes.info/color-names
ncolors the number of colors specified
zlim the minimum and maximum z values for which colors should be plotted, defaulting to the range of the finite values of z . Each of the given colors will be used to color an equispaced interval of this range. The midpoints of the intervals cover the range, so that values just outside the range will be plotted
border.color the border color for each hexagon
gp an object of class gpar, typically the output from a call to the function gpar (i.e., a list of graphical parameter settings)
newpage
logical to indicate whether to open a new page. By default, it sets to true for opening a new page

\section*{Value}
invisible

\section*{Note}
none

\section*{See Also}
visVp, visHexComp, visColorbar

\section*{Examples}
```


1) generate data with an iid matrix of 1000 x 3

data <- cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3, mean=0.5,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3))
colnames(data) <- c("S1","S1","S1","S2","S2","S2", "S3","S3", "S3")

2) sMap resulted from using by default setup

sMap <- sPipeline(data=data)

3) visualise multiple component planes of a supra-hexagonal grid

visHexMulComp(sMap, colormap="jet", ncolors=20, zlim=c(-1,1),
gp=grid::gpar(cex=0.8))

3a) visualise only the first 6 component planes

visHexMulComp(sMap, which.components=1:6, colormap="jet", ncolors=20,
zlim=c(-1,1), gp=grid::gpar(cex=0.8))

3b) visualise only the first 6 component planes within the rectangle grid of 3 < 2

visHexMulComp(sMap, which.components=1:6, rect.grid=c(3,2),
colormap="jet", ncolors=20, zlim=c(-1,1), gp=grid::gpar(cex=0.8))

```
visHexPattern
Function to visualise codebook matrix or input patterns within a supra-hexagonal grid

\section*{Description}
visHexPattern is supposed to codebook matrix or input patterns within a supra-hexagonal grid.

\section*{Usage}
```

visHexPattern(
sObj,
plotType = c("lines", "bars", "radars"),
pattern = NULL,
height = 7,
margin = rep(0.1, 4),
colormap = c("customized", "bwr", "jet", "gbr", "wyr", "br", "yr",
"rainbow", "wb"),
customized.color = "red",
alterntive.color = c("transparent", "gray"),
zeropattern.color = "gray",
legend = TRUE,
legend.cex = 0.8,
legend.label = NULL,
newpage = TRUE
)

```

\section*{Arguments}

\section*{sObj}
an object of class "sMap" or "sTopol" or "sInit"
plotType the plot type, can be "lines" for line/point graph, "bars" for bar graph, "radars" for radar graph
pattern By default, it sets to "NULL" for the codebook matrix. It is intended for the user-input patterns, i.e., a matrix with the dimension of nHex x nPattern, where nHex is the number of hexagons and nPattern is the number of elements for each pattern
height a numeric value specifying the height of device
margin margins as units of length 4 or 1
colormap short name for the predifined colormap, and "customized" for custom input (see the next 'customized.color'). The predifined colormap can be one of "jet" (jet colormap), "bwr" (blue-white-red colormap), "gbr" (green-black-red colormap), "wyr" (white-yellow-red colormap), "br" (black-red colormap), "yr" (yellow-red colormap), "wb" (white-black colormap), and "rainbow" (rainbow colormap, that is, red-yellow-green-cyan-blue-magenta). Alternatively, any hyphen-separated HTML color names, e.g. "blue-black-yellow", "royalblue-white-sandybrown",
"darkgreen-white-darkviolet". A list of standard color names can be found in http://html-color-codes.info/color-names
customized.color the customized color for pattern visualisation
alterntive.color the alterntive color used to indicate the hexagon layout
zeropattern.color the color for zero horizental line
legend logical to indicate whether to add the legend
legend.cex a numerical value giving the amount by which legend text should be magnified relative to the default (i.e., 1)
legend.label a vector specifying the legend label. By default, it is NULL for using column names of the codebook matrix (or the matrix given by the parameter 'pattern')
newpage logical to indicate whether to open a new page. By default, it sets to true for opening a new page

\section*{Value}
invisible

\section*{Note}

The "plotType" includes:
- "lines": line plot. If multple colors are given, the points are also plotted. When the pattern involves both positive and negative values, zero horizental line is also shown
- "bars": bar plot. When the pattern involves both positive and negative values, the zero horizental line is in the middle of the hexagon; otherwise at the top of the hexagon for all negative values, and at the bottom for all positive values
- "radars": radar plot. Each radar diagram represents one pattern, wherein each element value is proportional to the distance from the center. Note, it starts on the right and wind counterclockwise around the circle

\section*{See Also}
sPipeline, visColormap

\section*{Examples}
```


1) generate data with an iid matrix of 1000 x 9

data <- cbind(matrix(rnorm(1000*3,mean=0,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=0.5,sd=1), nrow=1000, ncol=3),
matrix(rnorm(1000*3,mean=-0.5,sd=1), nrow=1000, ncol=3))
colnames(data) <- c("S1","S1", "S1", "S2", "S2", "S2", "S3", "S3", "S3")

2) sMap resulted from using by default setup

sMap <- sPipeline(data=data)

```
```


3) plot codebook patterns using different types

3a) line plot

visHexPattern(sMap, plotType="lines")

3b) bar plot

visHexPattern(sMap, plotType="bars")

3c) radar plot

visHexPattern(sMap, plotType="radars")

4) plot user-input patterns using different types

4a) generate pattern data with two different groups "S" and "T"

nHex <- sMap\$nHex
pattern <- cbind(matrix(runif(nHex*3,min=0,max=1), nrow=nHex, ncol=3),
matrix(runif(nHex*3,min=1,max=2), nrow=nHex, ncol=3))
colnames(pattern) <- c("S1","S2","S3","T1","T2","T3")

4b) for line plot

visHexPattern(sMap, plotType="lines", pattern=pattern,
customized.color="red", zeropattern.color="gray")

4c) for bar plot

visHexPattern(sMap, plotType="bars", pattern=pattern,
customized.color=rep(c("red","green"),each=3))
visHexPattern(sMap, plotType="bars", pattern=pattern,
customized.color=rep(c("red", "green"),each=3), legend.label=c("S","T"))

4d) for radar plot

visHexPattern(sMap, plotType="radars", pattern=pattern,
customized.color=rep(c("red","green"), each=3))
visHexPattern(sMap, plotType="radars", pattern=pattern,
customized.color=rep(c("red","green"),each=3), legend.label=c("S","T"))

```
```

visKernels Function to visualize neighborhood kernels

```

\section*{Description}
visKernels is supposed to visualize a series of neighborhood kernels, each of which is a nonincreasing functions of: i) the distance \(d_{w i}\) between the hexagon/rectangle \(i\) and the winner \(w\), and ii) the radius \(\delta_{t}\) at time \(t\).

\section*{Usage}
visKernels(newpage \(=\) TRUE)

\section*{Arguments}
newpage logical to indicate whether to open a new page. By default, it sets to true for opening a new page

\section*{Value}
invisible

\section*{Note}

There are five kernels that are currently supported:
- For "gaussian" kernel, \(h_{w i}(t)=e^{-d_{w i}^{2} /\left(2 * \delta_{t}^{2}\right)}\)
- For "cutguassian" kernel, \(h_{w i}(t)=e^{-d_{w i}^{2} /\left(2 * \delta_{t}^{2}\right)} *\left(d_{w i} \leq \delta_{t}\right)\)
- For "bubble" kernel, \(h_{w i}(t)=\left(d_{w i} \leq \delta_{t}\right)\)
- For "ep" kernel, \(h_{w i}(t)=\left(1-d_{w i}^{2} / \delta_{t}^{2}\right) *\left(d_{w i} \leq \delta_{t}\right)\)
- For "gamma" kernel, \(h_{w i}(t)=1 / \Gamma\left(d_{w i}^{2} /\left(4 * \delta_{t}^{2}\right)+2\right)\)

These kernels above are displayed within a plot for each fixed radius. Three different radii (i.e., 1 and 2) are illustrated.

\section*{See Also}
sTrainSeq, sTrainBatch

\section*{Examples}
```


visualise currently supported five kernels

visKernels()

```
visTreeBootstrap Function to build and visualise the bootstrapped tree

\section*{Description}
visTreeBootstrap is supposed to build the tree, perform bootstrap analysis and visualise the bootstrapped tree. It returns an object of class "phylo". For easy downstream analysis, the bootstrapped tree is rerooted either at the internal node with the miminum bootstrap/confidence value or at any customised internal node.

\section*{Usage}
```

visTreeBootstrap(
data,
algorithm = c("nj", "fastme.ols", "fastme.bal"),
metric = c("euclidean", "pearson", "spearman", "cos", "manhattan",
"kendall", "mi",
"binary"),
num.bootstrap = 100,
consensus = FALSE,
consensus.majority = 0.5,
reroot = "min.bootstrap",
plot.phylo.arg = NULL,
nodelabels.arg = NULL,
visTree = TRUE,
verbose = TRUE,
)

```

\section*{Arguments}
\(\left.\begin{array}{ll}\text { data } & \begin{array}{l}\text { an input data matrix used to build the tree. The built tree describes the relation- } \\ \text { ships between rows of input matrix }\end{array} \\ \text { algorithm } \\ \text { the tree-building algorithm. It can be one of "nj" for the neighbor-joining tree es- } \\ \text { timation, "fastme.ols" for the minimum evolution algorithm with ordinary least- } \\ \text { squares (OLS) fitting of a metric to a tree structure, and "fastme.bal" for the } \\ \text { minimum evolution algorithm under a balanced (BAL) weighting scheme }\end{array}\right\}\)

\section*{Value}
an object of class "phylo". It can return a bootstrapped tree or a consensus tree (if enabled): When a bootstrapped tree is returned (also visualised by default), the "phylo" object has a list with following components:
- Nnode: the number of internal nodes
- node. label: the labels for internal nodes. Here, each internal node is associated with the bootstrap value
- tip. label: the labels for tip nodes. Tip labels come from the row names of the input matrix, but are not necessarily the same order as they appear in the input matrix
- edge: a two-column matrix describing the links between tree nodes (including internal and tip nodes)
- edge. length: a vector indicating the edge length in the 'edge'
- Note: the tree structure is indexed with 1:Ntip for tip nodes, and (Ntip+1):(Ntip+Nnode) for internal nodes, where Ntip is the number of tip nodes and Nnode for the number of internal nodes. Moreover, nrow \((\) data \()=\) Ntip \(=\) Nnode -2 .

When a consensus tree is returned (no visualisation), the "phylo" object has a list with following components:
- Nnode: the number of internal nodes
- tip. label: the lables for tip nodes. Tip labels come from the row names of the input matrix, but are not necessarily the same order as they appear in the input matrix
- edge: a two-column matrix describing the links between tree nodes (including internal and tip nodes)

\section*{Note}

A list of main parameters used in the function "ape::plot.phylo":
- "type": a character string specifying the type of phylogeny to be drawn; it must be one of "phylogram" (the default), "cladogram", "fan", "unrooted", "radial" or any unambiguous abbreviation of these
- "direction": a character string specifying the direction of the tree. Four values are possible: "rightwards" (the default), "leftwards", "upwards", and "downwards"
- "lab4ut": (= labels for unrooted trees) a character string specifying the display of tip labels for unrooted trees: either "horizontal" where all labels are horizontal (the default), or "axial" where the labels are displayed in the axis of the corresponding terminal branches. This option has an effect only if type = "unrooted"
- "edge.color": a vector of mode character giving the colours used to draw the branches of the plotted phylogeny. These are taken to be in the same order than the component edge of phy. If fewer colours are given than the length of edge, then the colours are recycled
- "edge.width": a numeric vector giving the width of the branches of the plotted phylogeny. These are taken to be in the same order than the component edge of phy. If fewer widths are given than the length of edge, then these are recycled
- "edge.lty": same than the previous argument but for line types; 1: plain, 2: dashed, 3: dotted, 4: dotdash, 5: longdash, 6: twodash
- "font": an integer specifying the type of font for the labels: 1 (plain text), 2 (bold), 3 (italic, the default), or 4 (bold italic)
- "cex": a numeric value giving the factor scaling of the tip and node labels (Character EXpansion). The default is to take the current value from the graphical parameters
- "adj": a numeric specifying the justification of the text strings of the labels: 0 (left-justification), 0.5 (centering), or 1 (right-justification). This option has no effect if type="unrooted". If NULL (the default) the value is set with respect of direction (see details)
- "srt": a numeric giving how much the labels are rotated in degrees (negative values are allowed resulting in clock-like rotation); the value has an effect respectively to the value of direction (see Examples). This option has no effect if type="unrooted"
- "no.margin": a logical. If TRUE, the margins are set to zero and the plot uses all the space of the device
- "label.offset": a numeric giving the space between the nodes and the tips of the phylogeny and their corresponding labels. This option has no effect if type="unrooted"
- "rotate.tree": for "fan", "unrooted", or "radial" trees: the rotation of the whole tree in degrees (negative values are accepted

A list of main parameters used in the function "ape::nodelabels":
- "text": a vector of mode character giving the text to be printed. By default, the labels for internal nodes (see "node.label"), that is, the bootstrap values associated with internal nodes
- "node": a vector of mode numeric giving the numbers of the nodes where the text or the symbols are to be printed. By default, indexes for internal nodes, that is, (Ntip+1):(Ntip+Nnode), where Ntip is the number of tip nodes and Nnode for the number of internal nodes
- "adj": one or two numeric values specifying the horizontal and vertical, respectively, justification of the text or symbols. By default, the text is centered horizontally and vertically. If a single value is given, this alters only the horizontal position of the text
- "frame": a character string specifying the kind of frame to be printed around the text. This must be one of "rect" (the default), "circle", "none", or any unambiguous abbreviation of these
- "cex": a numeric value giving the factor scaling of the tip and node labels (Character EXpansion). The default is to take the current value from the graphical parameters
- "font": an integer specifying the type of font for the labels: 1 (plain text), 2 (bold), 3 (italic, the default), or 4 (bold italic)
- "col": a character string giving the color to be used for the text or the plotting symbols; this is eventually recycled
- "bg": a character string giving the color to be used for the background of the text frames or of the plotting symbols if it applies; this is eventually recycled. It can be one of "jet" (jet colormap), "bwr" (blue-white-red colormap), "gbr" (green-black-red colormap), "wyr" (white-yellow-red colormap), "br" (black-red colormap), "yr" (yellow-red colormap), "wb" (white-black colormap), and "rainbow" (rainbow colormap, that is, red-yellow-green-cyan-blue-magenta). Alternatively, any hyphen-separated HTML color names, e.g. "blue-blackyellow", "royalblue-white-sandybrown", "darkgreen-white-darkviolet". A list of standard color names can be found in http://html-color-codes.info/color-names

\section*{See Also}
```

visTreeBootstrap

```

\section*{Examples}
```


1) generate an iid normal random matrix of 100x10

data <- matrix(rnorm(100*10,mean=0,sd=1), nrow=100, ncol=10)
colnames(data) <- paste(rep('S',10), seq(1:10), sep="")
data <- t(data)

```
```


Not run:

2) build neighbor-joining tree with bootstrap values and visualise it by default

visTreeBootstrap(data)

3) only display those internal nodes with bootstrap values > 30

3a) generate the bootstrapped tree (without visualisation)

tree_bs <- visTreeBootstrap(data, visTree=FALSE)

3b) look at the bootstrap values and ordered row names of input matrix

the bootstrap values

tree_bs\$node.label

ordered row names of input matrix

tree_bs\$tip.label

3c) determine internal nodes that should be displayed

Ntip <- length(tree_bs$tip.label) # number of tip nodes
Nnode <- length(tree_bs$node.label) \# number of internal nodes
flag <- which(as.numeric(tree_bs$node.label) > 30 |
!is.na(tree_bs$node.label))
text <- tree_bs\$node.label[flag]
node <- Ntip + (1:Nnode)[flag]
visTreeBootstrap(data, nodelabels.arg=list(text=text,node=node))

4) obtain the consensus tree

tree_cons <- visTreeBootstrap(data, consensus=TRUE, num.bootstrap=10)

End(Not run)

```
visTreeBSclust Function to obtain clusters from a bootstrapped tree

\section*{Description}
visTreeBSclust is supposed to obtain clusters from a bootstrapped tree.

\section*{Usage}
visTreeBSclust(
tree_bs,
bootstrap.cutoff \(=80\),
max.fraction \(=1\),
min.size \(=3\),
visTree = TRUE,
plot.phylo.arg = NULL,
nodelabels.arg = NULL,
verbose = TRUE,
...
)

\section*{Arguments}
\begin{tabular}{|c|c|}
\hline tree_bs bootstrap.cuto & an "phylo" object storing a bootstrapped tree \\
\hline & an integer specifying bootstrap-derived clusters \\
\hline max.fraction & the maximum fraction of leaves contained in a cluster \\
\hline min.size & the minumum number of leaves contained in a cluster \\
\hline visTree & logical to indicate whether the tree will be visualised. By default, it sets to true for display \\
\hline plot.phylo.arg & a list of main parameters used in the function "ape::plot.phylo" http://rdrr. io/cran/ape/man/plot.phylo.html. See 'Note' below for details on the parameters \\
\hline nodelabels.arg & a list of main parameters used in the function "ape::nodelabels" http://rdrr. io/cran/ape/man/nodelabels.html. See 'Note' below for details on the parameters \\
\hline verbose & \begin{tabular}{l}
logical to indicate whether the messages will be displayed in the screen. By default, it sets to true for display \\
additional "ape::plot.phylo" parameters
\end{tabular} \\
\hline
\end{tabular}

\section*{Value}
a data frame following components:
- Samples: the labels for tip nodes (samples)
- Clusters: the clusters each tip node belongs to; unassigned tip nodes will be the cluster called 'C0'
- Clans: the internal node id for each cluster

\section*{Note}

A list of main parameters used in the function "ape::plot.phylo":
- "type": a character string specifying the type of phylogeny to be drawn; it must be one of "phylogram" (the default), "cladogram", "fan", "unrooted", "radial" or any unambiguous abbreviation of these
- "direction": a character string specifying the direction of the tree. Four values are possible: "rightwards" (the default), "leftwards", "upwards", and "downwards"
- "lab4ut": (= labels for unrooted trees) a character string specifying the display of tip labels for unrooted trees: either "horizontal" where all labels are horizontal (the default), or "axial" where the labels are displayed in the axis of the corresponding terminal branches. This option has an effect only if type = "unrooted"
- "edge.color": a vector of mode character giving the colours used to draw the branches of the plotted phylogeny. These are taken to be in the same order than the component edge of phy. If fewer colours are given than the length of edge, then the colours are recycled
- "edge.width": a numeric vector giving the width of the branches of the plotted phylogeny. These are taken to be in the same order than the component edge of phy. If fewer widths are given than the length of edge, then these are recycled
- "edge.lty": same than the previous argument but for line types; 1: plain, 2: dashed, 3: dotted, 4: dotdash, 5: longdash, 6: twodash
- "font": an integer specifying the type of font for the labels: 1 (plain text), 2 (bold), 3 (italic, the default), or 4 (bold italic)
- "cex": a numeric value giving the factor scaling of the tip and node labels (Character EXpansion). The default is to take the current value from the graphical parameters
- "adj": a numeric specifying the justification of the text strings of the labels: 0 (left-justification), 0.5 (centering), or 1 (right-justification). This option has no effect if type="unrooted". If NULL (the default) the value is set with respect of direction (see details)
- "srt": a numeric giving how much the labels are rotated in degrees (negative values are allowed resulting in clock-like rotation); the value has an effect respectively to the value of direction (see Examples). This option has no effect if type="unrooted"
- "no.margin": a logical. If TRUE, the margins are set to zero and the plot uses all the space of the device
- "label.offset": a numeric giving the space between the nodes and the tips of the phylogeny and their corresponding labels. This option has no effect if type="unrooted"
- "rotate.tree": for "fan", "unrooted", or "radial" trees: the rotation of the whole tree in degrees (negative values are accepted

A list of main parameters used in the function "ape::nodelabels":
- "text": a vector of mode character giving the text to be printed. By default, the labels for internal nodes (see "node.label"), that is, the bootstrap values associated with internal nodes
- "node": a vector of mode numeric giving the numbers of the nodes where the text or the symbols are to be printed. By default, indexes for internal nodes, that is, (Ntip+1):(Ntip+Nnode), where Ntip is the number of tip nodes and Nnode for the number of internal nodes
- "adj": one or two numeric values specifying the horizontal and vertical, respectively, justification of the text or symbols. By default, the text is centered horizontally and vertically. If a single value is given, this alters only the horizontal position of the text
- "frame": a character string specifying the kind of frame to be printed around the text. This must be one of "rect" (the default), "circle", "none", or any unambiguous abbreviation of these
- "cex": a numeric value giving the factor scaling of the tip and node labels (Character EXpansion). The default is to take the current value from the graphical parameters
- "font": an integer specifying the type of font for the labels: 1 (plain text), 2 (bold), 3 (italic, the default), or 4 (bold italic)
- "col": a character string giving the color to be used for the text or the plotting symbols; this is eventually recycled
- "bg": a character string giving the color to be used for the background of the text frames or of the plotting symbols if it applies; this is eventually recycled. It can be one of "jet" (jet colormap), "bwr" (blue-white-red colormap), "gbr" (green-black-red colormap), "wyr" (white-yellow-red colormap), "br" (black-red colormap), "yr" (yellow-red colormap), "wb" (white-black colormap), and "rainbow" (rainbow colormap, that is, red-yellow-green-cyan-blue-magenta). Alternatively, any hyphen-separated HTML color names, e.g. "blue-blackyellow", "royalblue-white-sandybrown", "darkgreen-white-darkviolet". A list of standard color names can be found in http://html-color-codes.info/color-names

\section*{See Also}
visTreeBootstrap

\section*{Examples}
```


1) generate an iid normal random matrix of 100x10

data <- matrix(rnorm(100*10,mean=0, sd=1), nrow=100, ncol=10)
colnames(data) <- paste(rep('S',10), seq(1:10), sep="")
data <- t(data)

Not run:

2) build neighbor-joining tree with bootstrap values and visualise it by default

tree_bs <- visTreeBootstrap(data)

3) obtain clusters from a bootstrapped tree

res <- visTreeBSclust(tree_bs, bootstrap.cutoff=80)

hide tip labels and modify the font of internal node labels

res <- visTreeBSclust(tree_bs, bootstrap.cutoff=80,
nodelabels.arg=list(cex=0.4), show.tip.label=FALSE)

End(Not run)

```
    visVp Function to create viewports for multiple supra-hexagonal grids

\section*{Description}
vis \(V\) p is supposed to create viewports, which describe rectangular regions on a graphics device and define a number of coordinate systems for each of supra-hexagonal grids.

\section*{Usage}
```

visVp(
height = 7,
xdim = 1,
ydim = 1,
colNum = 1,
rowNum = 1,
gp = grid::gpar(),
newpage = TRUE
)

```

\section*{Arguments}
height a numeric value specifying the height of device
xdim an integer specifying x-dimension of the grid
ydim an integer specifying y-dimension of the grid
\begin{tabular}{ll} 
colNum & an integer specifying the number of columns \\
rowNum & an integer specifying the number of rows \\
gp & \begin{tabular}{l} 
an object of class gpar, typically the output from a call to the function gpar (i.e., \\
a list of graphical parameter settings)
\end{tabular} \\
newpage & \begin{tabular}{l} 
logical to indicate whether to open a new page. By default, it sets to true for \\
opening a new page
\end{tabular}
\end{tabular}

\section*{Value}
vpnames an R object of "viewport" class

\section*{Note}
none

\section*{See Also}
visHexMulComp, visCompReorder

\section*{Examples}
\# 1) create \(5 \times 5\) viewports
vpnames <- visVp(colNum=5, rowNum=5)
\# 2) look at names of these viewports
vpnames

\section*{Description}

Arabidopsis embryo dataset contains gene expression levels ( 3625 genes and 7 embryo samples) from Xiang et al. (2011). This dataset has been pre-processed: capping into floor of intensity 777.6; 2-base logarithmic transformation; row/gene centering; and keeping genes with at least 2fold changes (in any stage) as compared to the average over embryo stages.

\section*{Usage}
data(Xiang)

\section*{Value}
- Xiang: a gene expression matrix of 3625 genes x 7 stage samples. These embryo stages are: zygote, quadrant, globular, heart, torpedo, bent, and mature.

\section*{References}

Xiang et al. (2011) Genome-wide analysis reveals gene expression and metabolic network dynamics during embryo development in Arabidopsis. Plant Physiol, 156(1):346-356.

\section*{Index}
* datasets

Fang, 3
Golub, 3
Xiang, 78

Fang, 3
Golub, 3
sBMH, 4, 7, 12, 23, 28, 39
sCompReorder, 5, 43
sDistance, 6, 7, 8, 12
sDmat, 10, 12, 13, 45, 64
sDmatCluster, 9, 11, 45, 48, 64
sDmatMinima, 12, 12
sHexDist, 14, 23, 25
sHexGrid, 15, 17, 30, 31
sHexGridVariant, 16, 20
sHexPolygon, 19
sInitial, 14, 20, 28, 35
sMapOverlay, 22
sNeighAny, 10, 13, 24
sNeighDirect, \(12,24,25\)
sPipeline, 5, 7, 12, 16, 20, 23, 26, 59, 68
sTopology, 7, 14, 21, 28, 29
sTrainBatch, 28, 32, 70
sTrainology, 28, 33, 34, 37
sTrainSeq, 28, 36, 70
sWriteData, 38
visColoralpha, 39, 42
visColorbar, 40, 43, 66
visColormap, 40, 41, 41, 45, 59, 61, 68
visCompReorder, 7, 41, 42, 78
visDmatCluster, 12, 44
visDmatHeatmap, 46
visHeatmap, 48, 50
visHeatmapAdv, 48, 51, 53
visHexAnimate, 55
visHexBarplot, 58
visHexComp, 43, 60, 62, 66
visHexGrid, 45, 61, 61, 64
visHexMapping, 31, 63
visHexMulComp, 23, 28, 41, 57, 65, 78
visHexPattern, 67
visKernels, 33, 37, 69
visTreeBootstrap, 70, 73, 77
visTreeBSclust, 74
visVp, 43, 66, 77
Xiang, 78```

