Package ‘batchelor’

May 24, 2024

Version 1.21.0

Date 2023-12-27

Title Single-Cell Batch Correction Methods
Depends SingleCellExperiment

Imports SummarizedExperiment, S4Vectors, BiocGenerics, Rcpp, stats,
methods, utils, igraph, BiocNeighbors, BiocSingular, Matrix,
DelayedArray, DelayedMatrixStats, BiocParallel, scuttle,
ResidualMatrix, ScaledMatrix, beachmat

Suggests testthat, BiocStyle, knitr, rmarkdown, scran, scater,
bluster, scRNAseq

biocViews Sequencing, RNASeq, Software, GeneExpression,
Transcriptomics, SingleCell, BatchEffect, Normalization

LinkingTo Rcpp

Description
Implements a variety of methods for batch correction of single-cell (RNA sequencing) data.
This includes methods based on detecting mutually nearest neighbors,
as well as several efficient variants of linear regression of the log-expression values.
Functions are also provided to perform global rescaling to remove differences in depth be-
tween batches,
and to perform a principal components analysis that is robust to differences in the num-
bers of cells across batches.

License GPL-3

NeedsCompilation yes

VignetteBuilder knitr

SystemRequirements C++11

RoxygenNote 7.2.0

git_url https://git.bioconductor.org/packages/batchelor
git_branch devel

git_last_commit 8b03562

git_last_commit_date 2024-04-30

Repository Bioconductor 3.20
Date/Publication 2024-05-24

Author Aaron Lun [aut, cre],
Laleh Haghverdi [ctb]

Maintainer Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>

applyMultiSCE

Contents
applyMultiSCE e 2
batchCorrect e 5
batchelor-restrict L e 8
BatchelorParam-class 10
checkBatchConsistency 11
clusterMINN e e 12
convertPCsToSCE e 15
correctExperiments L. 17
cosineNOImM e e e e 19
diagnostics-cluster e 21
divideIntoBatches e 22
fastMNN . . . e e e e e e 23
intersectROWS e 30
mnNCOITECtt ot e e e e e e e e e e e e e e e e e 32
mnnDeltaVariance 38
multiBatchNorm e e 41
multiBatchPCA e 43
NOCOITEC o o e e e e e e e e e e e e e e e e e e 47
quickCorrect e 48
reducedMNN 51
TEEXPOILS . v o v v v i e e e e e e e e e e e e e e e e e e 53
regressBatches L L 53
rescaleBatches 56

Index 59

applyMultiSCE Apply function over multiple SingleCellExperiments
Description

A generalization of applySCE to apply a function to corresponding parts of multiple SingleCellEx-

periments, each of which have one or more alternative Experiments.

applyMultiSCE 3

Usage
applyMultiSCE(
FUN,
WHICH = NULL,

COMMON.ARGS = 1list(),
MAIN.ARGS = list(),
ALT.ARGS = list(),
SIMPLIFY = TRUE

Arguments

One or more SingleCellExperiment objects containing counts and size factors.
Each object should contain the same number of rows, corresponding to the same
genes in the same order.

If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. If a single object is supplied, batch should also be
specified.

Alternatively, one or more lists of SingleCellExperiments can be provided; this
is flattened as if the objects inside were passed directly to

FUN Any function that accepts multiple SummarizedExperiment or SingleCellExper-
iment objects.

WHICH A character or integer vector containing the names or positions of alternative
Experiments to loop over. Defaults to all alternative Experiments that are present
in each SingleCellExperiment in

COMMON . ARGS Further (named) arguments to pass to all calls to FUN.

MAIN.ARGS A named list of arguments to pass to calls to FUN involving the main Experi-
ment(s) only. Alternatively NULL, in which case the function is not applied to
the main Experiment.

ALT.ARGS A named list where each entry is named after an alternative Experiment and
contains named arguments to use in FUN for that Experiment.

SIMPLIFY Logical scalar indicating whether the output should be simplified to one or more
SingleCellExperiments.

Details

This function is a generalization of applySCE whereby corresponding Experiments from ... are
passed to FUN. To illustrate, if we passed objects x, yand zin . . .:

1. We first call FUN on the set of all main Experiments from . . ., obtaining a result equivalent to
FUN(x, y, z) (more on the other arguments later).

2. Then we call FUN on the set of all first alternative Experiments. This is equivalent to FUN(altExp(x),
altExp(y), altExp(z)).

3. Then we call FUN on the set of all second alternative Experiments. This is equivalent to
FUN(altExp(x, 2), altExp(y, 2), altExp(z, 2)).

4 applyMultiSCE

4. And so on.

In effect, much like applySCE is analogous to lapply, applyMultiSCE is analogous to mapply.
This allows users to easily apply the same function to all the Experiments (main and alternative) in
a list of SingleCellExperiment objects.

Arguments in COMMON. ARGS (plus some extra arguments, see below) are passed to all calls to FUN.
Arguments in MAIN.ARGS are only used in the call to FUN on the main Experiments. Arguments in
ALT.ARGS are passed to the call to FUN on the alternative Experiments of the same name. For the
last two, any arguments therein will override arguments of the same name in COMMON . ARGS.

Arguments in . . . that are not SingleCellExperiments are actually treated as additional arguments

for COMMON . ARGS. This is purely intended as a user convenience, to avoid the need to write COMMON. ARGS=11ist ()
when specifying these arguments. However, explicitly using COMMON. ARGS is the safer approach and
recommended for developers.

By default, looping is performed over alternative Experiments with names that are present across
all entries of Values of WHICH should be unique if any simplification of the output is desired. If
MAIN.ARGS=NULL, the main Experiment is ignored and the function is only applied to the alternative
Experiments.

The default of SIMPLIFY=TRUE is aims to make the output easier to manipulate. If FUN returns a
SingleCellExperiment, the outputs across main and alternative Experiments are simplified into a
single SingleCellExperiment. If FUN returns a list of SingleCellExperiments of the same length, the
outputs are simplified into one list of SingleCellExperiments. This assumes that WHICH contains no
more than one reference to each alternative Experiment in x.

Value

In most cases or when SIMPLIFY=FALSE, a list is returned containing the output of FUN applied to
each corresponding Experiment across all If MAIN. ARGS is not NULL, the first entry corresponds
to the result generated from the main Experiments; all other results are generated according to the
entries specified in WHICH and are named accordingly.

If SIMPLIFY=TRUE and certain conditions are fulfilled, we can either return:

* A single SingleCellExperiment, if all calls to FUN return a SingleCellExperiment. Here, the
results of FUN on the main/alternative Experiments in . . . are mapped to the main or alternative
Experiments of the same name in the output.

* A list of SingleCellExperiments, if all calls to FUN return a list of SingleCellExperiments of
the same length. The altExps of each output SingleCellExperiment contains the results from
the corresponding call to FUN on the alternative Experiments of the same name in

In both cases, the aim is to mirror the organization of Experiments in each entry of

Author(s)

Aaron Lun

See Also

applySCE, for the simpler version that involves only one SingleCellExperiment object.

simplifyToSCE, for the conditions required for simplification.

batchCorrect

Examples

Setting up some objects with alternative Experiments.
d1l <- matrix(rnbinom(50000, mu=10, size=1), ncol=100)
scel <- SingleCellExperiment(list(counts=d1))
sizeFactors(scel) <- runif(ncol(d1))

altExp(scel, "Spike") <- scel

altExp(scel, "Protein") <- scel

d2 <- matrix(rnbinom(20000, mu=50, size=1), ncol=40)
sce2 <- SingleCellExperiment(list(counts=d2))
sizeFactors(sce2) <- runif(ncol(d2))

altExp(sce2, "Spike") <- sce2

altExp(sce2, "Protein"”) <- sce2

Applying a function over the main and alternative experiments.
normed <- applyMultiSCE(scel, sce2, FUN=multiBatchNorm)

normed

altExp(normed[[1]]) # contains log-normalized values

regressed <- applyMultiSCE(normed, FUN=regressBatches)
regressed
altExp(regressed) # contains corrected expression values

rescaled <- applyMultiSCE(normed, FUN=rescaleBatches)
rescaled
altExp(rescaled) # contains corrected expression values

We can also specify 'batch=' directly.
combined <- cbind(scel, sce2)
batch <- rep(1:2, c(ncol(scel), ncol(sce2)))

normed <- applyMultiSCE(combined, batch=batch, FUN=multiBatchNorm)
normed
altExp(normed) # contains log-normalized values

regressed <- applyMultiSCE(normed, batch=batch, FUN=regressBatches)
regressed
altExp(regressed) # contains corrected expression values

rescaled <- applyMultiSCE(normed, batch=batch, FUN=rescaleBatches)
rescaled
altExp(rescaled) # contains corrected expression values

batchCorrect Batch correction methods

Description

A common interface for single-cell batch correction methods.

6 batchCorrect

Usage

batchCorrect(
batch = NULL,
restrict = NULL,
subset.row = NULL,
correct.all = FALSE,
assay.type = NULL,
PARAM

)

S4 method for signature 'ClassicMnnParam'
batchCorrect(

batch = NULL,

restrict = NULL,

subset.row = NULL,
correct.all = FALSE,

assay.type = "logcounts”,

PARAM
)
S4 method for signature 'FastMnnParam'
batchCorrect(

batch = NULL,

restrict = NULL,
subset.row = NULL,
correct.all = FALSE,

assay.type = "logcounts”,

PARAM
)
S4 method for signature 'RescaleParam'
batchCorrect(

batch = NULL,

restrict = NULL,
subset.row = NULL,
correct.all = FALSE,
assay.type = "logcounts”,
PARAM

)

S4 method for signature 'RegressParam'
batchCorrect(

batch = NULL,

batchCorrect 7

restrict = NULL,
subset.row = NULL,
correct.all = FALSE,

assay.type = "logcounts”,

PARAM
)
S4 method for signature 'NoCorrectParam'
batchCorrect(

batch = NULL,

restrict = NULL,
subset.row = NULL,
correct.all = FALSE,
assay.type = "logcounts”,
PARAM

Arguments

One or more matrix-like objects containing single-cell gene expression matrices.
Alternatively, one or more SingleCellExperiment objects can be supplied.

If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. Objects of different types can be mixed together. If a
single object is supplied, batch should also be specified.

batch A factor specifying the batch of origin for each cell if only one batch is supplied
in This will be ignored if two or more batches are supplied.

restrict A list of length equal to the number of objects in Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

subset.row A vector specifying the subset of genes to use for correction. Defaults to NULL,
in which case all genes are used.

correct.all A logical scalar indicating whether to return corrected expression values for all
genes, even if subset.row is set. Used to ensure that the output is of the same
dimensionality as the input.

assay. type A string or integer scalar specifying the assay to use for correction. Only used
for SingleCellExperiment inputs.

PARAM A BatchelorParam object specifying the batch correction method to dispatch to,
and the parameters with which it should be run. ClassicMnnParam will dispatch
to mnnCorrect; FastMnnParam will dispatch to fastMNN; RescaleParam will
dispatch to rescaleBatches; and RegressParam will dispatch to regressBatches.

Details

Users can pass parameters to each method directly via . . . or via the constructors for PARAM. While
there is no restriction on which parameters go where, we recommend only passing data-agnostic and
method-specific parameters to PARAM. Data-dependent parameters - and indeed, the data themselves

8 batchelor-restrict

- should be passed in via This means that different data sets can be used without modifying
PARAM, allowing users to switch to a different algorithm by only changing PARAM.

Value

A SingleCellExperiment where the first assay contains corrected gene expression values for all
genes. Corrected values should be returned for all genes if subset.row=NULL or if correct.all=TRUE;
otherwise they should only be returned for the genes in the subset.

Cells should be reported in the same order that they are supplied. In cases with multiple batches,
the cell identities are simply concatenated from successive objects in their specified order, i.e., all
cells from the first object (in their provided order), then all cells from the second object, and so on.
For a single input object, cells should be reported in the same order as the input.

The colData slot should contain batch, a vector specifying the batch of origin for each cell.

Author(s)

Aaron Lun

See Also

BatchelorParam classes to determine dispatch.

correctExperiments, to obtain corrected values while retaining the original expression data.

Examples

B1 <- matrix(rnorm(10000), ncol=50) # Batch 1
B2 <- matrix(rnorm(10000), ncol=50) # Batch 2

Switching easily between batch correction methods.
m.out <- batchCorrect(B1, B2, PARAM=ClassicMnnParam())
f.out <- batchCorrect(B1, B2, PARAM=FastMnnParam(d=20))
r.out <- batchCorrect(B1, B2, PARAM=RescaleParam(pseudo.count=0))
n.out <- batchCorrect(B1, B2, PARAM=NoCorrectParam())
batchelor-restrict Using restriction
Description

Using restriction

batchelor-restrict 9

Motivation

It is possible to compute the correction using only a subset of cells in each batch, and then extrapo-
late that correction to all other cells. This may be desirable in experimental designs where a control
set of cells from the same source population were run on different batches. Any difference in the
controls must be artificial in origin and can be directly removed without making further biological
assumptions. Similarly, if certain cells are known to be of a batch-specific subpopulation, it may be
desirable to exclude them to ensure that they are not inadvertently used during the batch correction.

Setting the restrict argument

To perform restriction, users should set restrict to specify the subset of cells in each batch to be
used for correction. This should be set to a list of length equal to the number of objects passed to
the ... argument of the batch correction function. Each element of this list should be a subsetting
vector to be applied to the columns of the corresponding batch. A NULL element indicates that all the
cells from a batch should be used. In situations where one input object contains multiple batches,
restrict should simply a list containing a single subsetting vector for that object.

Correction functions that support restrict will only use the restricted subset of cells in each batch
to perform the correction. For example, fastMNN will only use the restricted cells to identify MNN
pairs and the center of the orthogonalization. However, it will apply the correction to all cells in each
batch - hence the extrapolation. This means that the output is always of the same dimensionality,
regardless of whether restrict is specified.

As a general rule, users can expect the corrected values in the restricted cells to be the same as if
the inputs were directly subsetted to only contain those cells (see Examples). This is appealing as
it demonstrates that correction only uses information from the restricted subset of cells. If batch
correction functions do not follow this rule, they will explicitly state so, e.g., in ?fastMNN.

Author(s)

Aaron Lun

See Also

rescaleBatches, regressBatches, fastMNN and mnnCorrect, as examples of batch correction
methods that support restriction.

Examples

means <- 2*rgamma(1000, 2, 1)
Al <- matrix(rpois(10000, lambda=means), ncol=50) # Batch 1
A2 <- matrix(rpois(10000, lambda=means*runif(1000, @, 2)), ncol=50) # Batch 2

B1 <- log2(A1 + 1)

B2 <- log2(A2 + 1)

out <- regressBatches(B1, B2, restrict=list(1:10, 1:10))
assay(out)[,c(1:10, 50+1:10)]

Compare to actual subsetting:
out.sub <- regressBatches(B1[,1:10], B2[,1:10])
assay(out.sub)

10 BatchelorParam-class

BatchelorParam-class BatchelorParam methods

Description

Constructors and methods for the batchelor parameter classes.

Usage

ClassicMnnParam(...)
FastMnnParam(...)
RescaleParam(...)
RegressParam(...)

NoCorrectParam(...)

Arguments
Named arguments to pass to individual methods upon dispatch. These should
not include arguments named in the batchCorrect generic.

Details

BatchelorParam objects are intended to store method-specific parameter settings to pass to the
batchCorrect generic. These values should refer to data-agnostic parameters; parameters that
depend on data (or the data itself) should be specified directly in the batchCorrect call.

The BatchelorParam classes are all derived from SimpleList objects and have the same available
methods, e.g., [[, $. These can be used to access or modify the object after construction.

Note that the BatchelorParam class itself is not useful and should not be constructed directly. In-
stead, users should use the constructors shown above to create instances of the desired subclass.

Value

The constructors will return a BatchelorParam object of the specified subclass, containing parameter
settings for the corresponding batch correction method.

Author(s)

Aaron Lun

See Also

batchCorrect, where the BatchelorParam objects are used for dispatch to individual methods.

checkBatchConsistency 11

Examples

Specifying the number of neighbors, dimensionality.
fp <- FastMnnParam(k=20, d=10)
fp

List-like behaviour:
fp$k

fp$k <- 10

fp$k

checkBatchConsistency Check batch inputs

Description

Utilities to check inputs into batch correction functions.

Usage

checkBatchConsistency(batches, cells.in.columns = TRUE)
checkIfSCE(batches)

checkRestrictions(batches, restrictions, cells.in.columns = TRUE)

Arguments

batches A list of batches, usually containing gene expression matrices or SingleCellEx-
periment objects.

cells.in.columns
A logical scalar specifying whether batches contain cells in the columns.

restrictions A list of length equal to batches, specifying the cells in each batch that should
be used for correction.

Details

These functions are intended for internal use and other package developers.

checkBatchConsistency will check whether the input batches are consistent with respect to the
size of the dimension containing features (i.e., not cells). It will also verify that the dimension
names are consistent, to avoid problems from variable ordering of rows/columns in the inputs.

checkRestrictions will check whether restrictions are consistent with the supplied batches,
in terms of the length and names of the two lists. It will also check that each batch contains at least
one usable cell after restriction.

12 clusterMNN

Value

checkBatchConsistency return an invisible NULL if there are no errors.

checkIfSCE will return a logical vector specifying whether each element of batches is a Single-
CellExperiment objects.

checkRestrictions will return NULL if restrictions=NULL. Otherwise, it will return a list by
taking restrictions and converting each non-NULL element into an integer subsetting vector.

Author(s)

Aaron Lun

See Also

divideIntoBatches

Examples

checkBatchConsistency(list(cbind(1:5), cbind(1:5, 2:6)))
try(# fails

checkBatchConsistency(list(cbind(1:5), cbind(1:4, 2:5)))
)

clusterMNN Cluster-based MNN

Description

Perform MNN correction based on cluster centroids, using the corrected centroid coordinates to
correct the per-cell expression values with a variable bandwidth Gaussian kernel.

Usage
clusterMNN(
batch = NULL,
restrict = NULL,
clusters,

cluster.d = 50,

cos.norm = TRUE,
merge.order = NULL,
auto.merge = FALSE,
min.batch.skip = 0,
subset.row = NULL,
correct.all = FALSE,
assay.type = "logcounts”,
BSPARAM = IrlbaParam(),

clusterMNN

BNPARAM

13

KmknnParam(),

BPPARAM = SerialParam()

Arguments

batch

restrict

clusters

cluster.d

cos.norm

merge.order

auto.merge

min.batch.skip

subset.row

correct.all

assay. type

BSPARAM

BNPARAM

One or more log-expression matrices where genes correspond to rows and cells
correspond to columns. Alternatively, one or more SingleCellExperiment ob-
jects can be supplied containing a log-expression matrix in the assay. type as-
say. Each object should contain the same number of rows, corresponding to the
same genes in the same order. Objects of different types can be mixed together.
If multiple objects are supplied, each object is assumed to contain all and only
cells from a single batch. If a single object is supplied, it is assumed to contain
cells from all batches, so batch should also be specified.

Alternatively, one or more lists of matrices or SingleCellExperiments can be
provided; this is flattened as if the objects inside each list were passed directly
to....

A vector or factor specifying the batch of origin for all cells when only a single
object is supplied in This is ignored if multiple objects are present.

A list of length equal to the number of objects in Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

A list of length equal to . . . containing the assigned cluster for each cell in each
batch. Alternatively, a BlusterParam object from the bluster package, specify-
ing the clustering to be applied to each batch.

Integer scalar indicating how many PCs should be used in clustering. Only used
if clusters is not a list. If NA, no PCA is performed and clustering is applied
directly to the (cosine-normalized) gene expression values.

A logical scalar indicating whether cosine normalization should be performed
on the input data prior to PCA.

An integer vector containing the linear merge order of batches in Alterna-
tively, a list of lists representing a tree structure specifying a hierarchical merge
order.

Logical scalar indicating whether to automatically identify the “best” merge or-
der.

Numeric scalar specifying the minimum relative magnitude of the batch effect,
below which no correction will be performed at a given merge step.

A vector specifying which features to use for correction.

Logical scalar indicating whether corrected expression values should be com-
puted for genes not in subset . row. Only relevant if subset. row is not NULL.

A string or integer scalar specifying the assay containing the log-expression
values. Only used for SingleCellExperiment inputs.

A BiocSingularParam object specifying the algorithm to use for PCA. Only used
if clusters is not a list.

A BiocNeighborParam object specifying the nearest neighbor algorithm.

14 clusterMNN

BPPARAM A BiocParallelParam object specifying whether the PCA and nearest-neighbor
searches should be parallelized.

Details

These functions are motivated by the scenario where each batch has been clustered separately and
each cluster has already been annotated with some meaningful biological state. We want to identify
which biological states match to each other across batches; this is achieved by identifying mutual
nearest neighbors based on the cluster centroids with reducedMNN.

MNN pairs are identified with k=1 to ensure that each cluster has no more than one match in another
batch. This reduces the risk of inadvertently merging together different clusters from the same
batch. By comparison, higher values of k may result in many-to-one mappings between batches
such that the correction will implicitly force different clusters together.

Using this guarantee of no-more-than-one mappings across batches, we can form meta-clusters by
identifying all components of the resulting MNN graph. Each meta-cluster can be considered to
represent some biological state (e.g., cell type), and all of its constituents are the matching clusters
within each batch.

As an extra courtesy, clusterMNN will also compute corrected values for each cell. This is done
by applying a Gaussian kernel to the correction vectors for the centroids, where the bandwidth is
proportional to the distance between that cell and the closest cluster centroid. This yields a smooth
correction function that avoids edge effects at cluster boundaries.

If clusters is set to a BlusterParam object (see the bluster package), a PCA is performed in each
batch with the specified BSPARAM. The PCs are then used in clustering with clusterRows to obtain
a list of clusters. This can be used to mimic per-cell batch correction in the absence of a priori
clusters.

Value

A SingleCellExperiment containing per-cell expression values where each row is a gene and each
column is a cell. This has the same format as the output of fastMNN but with an additional cluster
field in the colData containing the cluster identity of each cell. The metadata contains:

* merge. info, a DataFrame with the same format as the output of fastMNN. However, the pairs
and lost. var refer to the cluster centroids, not the cells.

e clusters, a DataFrame with one row for each cluster across all batches in This can be
row-indexed by the values in pairs to determine the identity of the clusters in each MNN pair.
An additional meta column is provided that describes the meta-cluster to which each cluster
belongs.

Author(s)

Aaron Lun

References
Lun ATL (2019). Cluster-based mutual nearest neighbors correction https://marionilab.github.
io/FurtherMNN2018/theory/clusters.html

Lun ATL (2019). A discussion of the known failure points of the fastMNN algorithm. https:
//marionilab.github.io/FurtherMNN2018/theory/failure.html

https://marionilab.github.io/FurtherMNN2018/theory/clusters.html
https://marionilab.github.io/FurtherMNN2018/theory/clusters.html
https://marionilab.github.io/FurtherMNN2018/theory/failure.html
https://marionilab.github.io/FurtherMNN2018/theory/failure.html

convertPCsToSCE 15

See Also

reducedMNN, which is used internally to perform the correction.

Examples

Mocking up some data for multiple batches:
means <- matrix(rnorm(3000), ncol=3)
colnames(means) <- LETTERS[1:3]

B1 <- means[,sample(LETTERS[1:3], 500, replace=TRUE)]
B1 <- B1 + rnorm(length(B1))

B2 <- means[,sample(LETTERS[1:3], 500, replace=TRUE)]
B2 <- B2 + rnorm(length(B2)) + rnorm(nrow(B2)) # batch effect.

Applying the correction with some made-up clusters:
cluster1l <- kmeans(t(B1), centers=10)$cluster

cluster2 <- kmeans(t(B2), centers=10)$cluster

out <- clusterMNN(B1, B2, clusters=list(clusterl, cluster2))

rd <- reducedDim(out, "corrected")
plot(rd[,1], rd[,2], col=out$batch)

Obtaining the clusters internally.
out2 <- clusterMNN(B1, B2, clusters=bluster::NNGraphParam())
rd2 <- reducedDim(out2, "corrected")
plot(rd2[,1], rd2[,2], col=out$batch)

convertPCsToSCE Convert corrected PCs to a SingleCellExperiment

Description

Convert low-dimensional corrected PCs to a SingleCellExperiment containing corrected expression
values. This is a low-level function and most users should not need to call it.

Usage
convertPCsToSCE(
corrected.df,
pc.info,
assay.name = "reconstructed”,
dimred.name = "corrected”

16

Arguments

corrected.df

pc.info

assay.name

dimred.name

Details

convertPCsToSCE

A DataFrame containing a nested matrix of low-dimensional corrected values
and a vector of batch identities. Typically produced from reducedMNN.

A list containing PCA statistics, in particular a rotation matrix. Typically
obtained from the metadata of the output from multiBatchPCA.

String specifying the name of the assay to use to store the corrected expression
values.

String containing the name fo the reducedDims to store the low-dimensional
corrected values. Set to NULL to avoid storing these.

The corrected expression values are obtained by simply taking the crossproduct of the corrected
PCs with the rotation matrix. This reverses the original projection to PC space while retaining the
effect of the correction. These values are best used for visualization; the low-dimensional corrected
coordinates are more efficient for per-cell operations like clustering, while the original uncorrected
expression values are safer to interpret for per-gene analyses.

Value

A SingleCellExperiment containing a LowRankMatrix with the corrected per-gene expression val-
ues. The colData contains the batch identities, the rowData contains the rotation matrix, and the
reducedDims contains the low-dimensional corrected values (if dimred.name is not NULL). All ad-
ditional metadata from corrected.df and pc.info is stored in metadata.

Author(s)

Aaron Lun

See Also

reducedMNN, to compute corrected.df; and multiBatchPCA, to compute pc.info.

fastMNN, which uses this function to obtain low-rank corrected values.

Examples

B1 <- matrix(rnorm(10000), nrow=50) # Batch 1
B2 <- matrix(rnorm(10000), nrow=50) # Batch 2

Equivalent to fastMNN().

cB1 <- cosineNorm(B1)

cB2 <- cosineNorm(B2)

pcs <- multiBatchPCA(cB1, cB2)

mnn.out <- reducedMNN(pcs[[1]], pcs[[2]1])

sce <- convertPCsToSCE(mnn.out, metadata(pcs))

sce

correctExperiments

17

correctExperiments Correct SingleCellExperiment objects

Description

Apply a correction to multiple SingleCellExperiment objects, while also combining the assay data
and column metadata for easy downstream use. This augments the simpler batchCorrect function,
which returns only the corrected values.

Usage

correctExperiments(

’

batch = NULL,

restrict = NULL,

subset.row

NULL,

correct.all = FALSE,
assay.type = "logcounts”,
PARAM = FastMnnParam(),
combine.assays = NULL,
combine.coldata = NULL,
include.rowdata = TRUE,
add.single = TRUE

Arguments

batch

restrict

subset.row

correct.all

assay. type

One or more SingleCellExperiment objects. If multiple objects are supplied,
each object is assumed to contain all and only cells from a single batch. If a
single object is supplied, batch should also be specified.

Alternatively, one or more lists of SingleCellExperiments can be provided; this
is flattened so that it is as if the objects inside were passed directly to

A factor specifying the batch of origin for each cell if only one batch is supplied
in This will be ignored if two or more batches are supplied.

A list of length equal to the number of objects in Each entry of the list
corresponds to one batch and specifies the cells to use when computing the cor-
rection.

A vector specifying the subset of genes to use for correction. Defaults to NULL,
in which case all genes are used.

A logical scalar indicating whether to return corrected expression values for all
genes, even if subset.row is set. Used to ensure that the output is of the same
dimensionality as the input.

A string or integer scalar specifying the assay to use for correction.

18 correctExperiments

PARAM A BatchelorParam object specifying the batch correction method to dispatch to,
and the parameters with which it should be run. ClassicMnnParam will dispatch
to mnnCorrect; FastMnnParam will dispatch to fastMNN; RescaleParam will
dispatch to rescaleBatches; and RegressParam will dispatch to regressBatches.

combine.assays Character vector specifying the assays from each entry of ... to combine to-
gether without correction. By default, any named assay that is present in all
entries of ... is combined. This can be set to character (@) to avoid combin-
ing any assays.

combine.coldata
Character vector specifying the column metadata fields from each entry of . ..
to combine together. By default, any column metadata field that is present in all
entries of . . . is combined. This can be set to character (@) to avoid combining
any metadata.

include.rowdata
Logical scalar indicating whether the function should attempt to include rowRanges.

add.single Logical scalar indicating whether merged fields should be added to the original
SingleCellExperiment. Only relevant when a single object is provided in If
TRUE, combine.assays, combine.coldata and include. rowdata are ignored.

Details

This function makes it easy to retain information from the original SingleCellExperiment objects
in the post-merge object. Operations like differential expression analyses can be easily performed
on the uncorrected expression values, while common annotation can be leveraged in cell-based
analyses like clustering.

 All assays shared across the original objects are cbinded and added to the merged object. This
can be controlled with combine.assays. Any original assay with the same name as an assay
in the output of batchCorrect will be ignored with a warning.

* Any column metadata fields that are shared will also be included in the merged object. This
can be controlled with combine.coldata. If any existing field has the same name as any
colData field produced by batchCorrect, it will be ignored in favor of the latter.

* Row metadata from . . . is included in the merged object if include.rowdata=TRUE. In such
cases, only non-conflicting row data fields are preserved, i.e., fields with different names or
identically named fields with the same values between objects in Any conflicting fields
are ignored with a warning. rowRanges are only preserved if they are identical (ignoring the
mcols) for all objectsin

If a single SingleCellExperiment object was supplied in ..., the default behavior is to prepend
all assays, reducedDims, colData, rowData and metadata fields from the merged object into
the original (removing any original entries with names that overlap those of the merged object).
This is useful as it preserves all (non-overlapping) aspects of the original object, especially the
reduced dimensions that cannot, in general, be sensibly combined across multiple objects. Setting
add.single=FALSE will force the creation of a new SingleCellExperiment rather than prepending.

Value

A SingleCellExperiment containing the merged expression values in the first assay and a batch
column metadata field specifying the batch of origin for each cell, as described in batchCorrect.

cosineNorm 19

Author(s)

Aaron Lun

See Also

batchCorrect, which does the correction inside this function.

noCorrect, for another method to combine uncorrected assay values.

Examples

scel <- scuttle::mockSCE()
scel <- scuttle::logNormCounts(scel)
sce2 <- scuttle::mockSCE()
sce2 <- scuttle::logNormCounts(sce2)

f.out <- correctExperiments(scel, sce2)
colData(f.out)
assayNames(f.out)

cosineNorm Cosine normalization

Description

Perform cosine normalization on the column vectors of an expression matrix.

Usage
cosineNorm(
X’
mode = c("matrix”, "all”, "l2norm"),

subset.row = NULL,
BPPARAM = SerialParam()

)
Arguments
X A gene expression matrix with cells as columns and genes as rows.
mode A string specifying the output to be returned.
subset.row A vector specifying which features to use to compute the L2 norm.
BPPARAM A BiocParallelParam object specifying how parallelization is to be performed.

Only used when x is a DelayedArray object.

20 cosineNorm

Details

Cosine normalization removes scaling differences between expression vectors. In the context of
batch correction, this is usually applied to remove differences between batches that are normalized
separately. For example, fastMNN uses this function on the log-expression vectors by default.

Technically, separate normalization introduces scaling differences in the normalized expression,
which should manifest as a shift in the log-transformed expression. However, in practice, single-
cell data will contain many small counts (where the log function is near-linear) or many zeroes
(which remain zero when the pseudo-count is 1). In these applications, scaling differences due to
separate normalization are better represented as scaling differences in the log-transformed values.

If applied to the raw count vectors, cosine normalization is similar to library size-related (i.e., L1)
normalization. However, we recommend using dedicated methods for computing size factors to
normalize raw count data.

While the default is to directly return the cosine-normalized matrix, it may occasionally be desirable
to obtain the L2 norm, e.g., to apply an equivalent normalization to other matrices. This can be
achieved by setting mode accordingly.

The function will return a DelayedMatrix if x is a DelayedMatrix. This aims to delay the calculation
of cosine-normalized values for very large matrices.

Value

If mode="matrix", a double-precision matrix of the same dimensions as X is returned, containing
cosine-normalized values.

If mode="12norm", a double-precision vector is returned containing the L2 norm for each cell.

If mode="all", a named list is returned containing the fields "matrix" and "12norm”, which are as
described above.

Author(s)

Aaron Lun

See Also

mnnCorrect and fastMNN, where this function gets used.

Examples

A <- matrix(rnorm(1000), nrow=10)
str(cosineNorm(A))
str(cosineNorm(A, mode="12norm"))

diagnostics-cluster 21

diagnostics-cluster Cluster-based correction diagnostics

Description

A variety of correction diagnostics that make use of clustering information, usually obtained by
clustering on cells from all batches in the corrected data.

Usage

clusterAbundanceTest(x, batch)

clusterAbundanceVar(x, batch, pseudo.count = 10)

Arguments
X A factor or vector specifying the assigned cluster for each cell in each batch
in the corrected data. Alternatively, a matrix or table containing the number of
cells in each cluster (row) and batch (column).
batch A factor or vector specifying the batch of origin for each cell. Ignored if x is a

matrix or table.

pseudo. count A numeric scalar containing the pseudo-count to use for the log-transformation.

Details

For clusterAbundanceTest, the null hypothesis for each cluster is that the distribution of cells
across batches is proportional to the total number of cells in each batch. We then use chisq. test
to test for deviations from the expected proportions, possibly indicative of imperfect mixing across
batches. This works best for technical replicates where the population composition should be iden-
tical across batches. However, the interpretation of the p-value loses its meaning for experiments
where there is more biological variability between batches.

For clusterAbundanceVar, we compute log-normalized abundances for each cluster using normalizeCounts.
We then compute the variance of the log-abundances across batches for each cluster. Large vari-

ances indicate that there are strong relative differences in abundance across batches, indicative of

either imperfect mixing or genuine batch-specific subpopulations. The idea is to rank clusters by

their variance to prioritize them for manual inspection to decide between these two possibilities.

We use a large pseudo.count by default to avoid spuriously large variances when the counts are

low.

Value

For clusterAbundanceTest, a named numeric vector of p-values from applying Pearson’s chi-
squared test on each cluster.

For clusterAbundanceVar, a named numeric vector of variances of log-abundances across batches
for each cluster.

22 divideIntoBatches

Author(s)

Aaron Lun

Examples

set.seed(1000)

means <- 2*rgamma(1000, 2, 1)

Al <- matrix(rpois(10000, lambda=means), ncol=50) # Batch 1

A2 <- matrix(rpois(10000, lambda=means*runif (1000, @, 2)), ncol=50) # Batch 2

B1 <- log2(A1 + 1)
B2 <- log2(A2 + 1)
out <- fastMNN(B1, B2)

cluster1l <- kmeans(t(B1), centers=10)$cluster
cluster2 <- kmeans(t(B2), centers=10)$cluster
merged.cluster <- kmeans(reducedDim(out, "corrected”), centers=10)$cluster

Low p-values indicate unexpected differences in abundance.
clusterAbundanceTest(paste("Cluster”, merged.cluster), out$batch)

High variances indicate differences in normalized abundance.
clusterAbundanceVar(paste(”Cluster”, merged.cluster), out$batch)

divideIntoBatches Divide into batches

Description

Divide a single input object into multiple separate objects according to their batch of origin.

Usage

divideIntoBatches(x, batch, byrow = FALSE, restrict = NULL)

Arguments
X A matrix-like object where one dimension corresponds to cells and another rep-
resents features.
batch A factor specifying the batch to which each cell belongs.
byrow A logical scalar indicating whether rows correspond to cells.
restrict A subsetting vector specifying which cells should be used for correction.
Details

This function is intended for internal use and other package developers. It splits a single input object
into multiple batches, allowing developers to use the same code for the scenario where batch is
supplied with a single input.

fastMNN 23

Value
A list contai