07/12/99 Storage Manager Architecture (DRAFT) Page 1 of 42

Storage Manager Architecture
June 29, 1999

© Computer Sciences Department, UW-Madison
This document was supported by DARPA through Rome Research Laboratory Contract No. F30602-97-2-0247.

07/12/99 Storage Manager Architecture (DRAFT) Page 2 of 42

1 Preface

This document describes the storage manager built for the SHORE (Scalable Heterogeneous Object
Repository) project. The SHORE Project ran from 1992 through 1996, and among its goals was to build a
typed, persistent object base with language heterogeneity and Unix compatibility. SHORE's type system,
Unix compatibility, and language support are provided in layers above the storage manager. The storage
manager provides persistence of untyped data, concurrency control and recovery, and other conventional
storage manager functions.

Several research projects have been using this storage manager:

e Paradise at http://www.cs.wisc.edu/paradise

* Predator at http://simon.cs.cornell.edu/| nfo/Proj ects/Predator

e DimSum at http://www.cs.umd.edu/proj ects/di msum/)

In order that researchers can use and extend the storage manager, this document is meant to describe some
of the history, rationale and conventions of the code. It is not a description of the programming interface.
It is meant to be a companion to the source code.

1.1 Historical background

The SHORE project software was intended to be atool for research. Some researchers used the storage
manager in toto, using it as a base for their prototypica software. Others modified the storage manager. In
particular, two graduate students' theses were related to storage manager functions. For thisreason, it was
expected that some parts of the storage manager would be replaced as the researchers’ work matured. Two
functional areasin particular were written by graduate students whose work was never installed into the
public storage manager releases: cooperating distributed servers (so-called multi-server capabilities) and
disk space management. Near the end of the SHORE project, the sole in-house user of the storage manager
was Paradise, which did its own data distribution above the storage manager layer, so integrating the multi-
server functionality was not a high priority. Likewise, the space management work was completed about
the time the SHORE project ended, hence that work was never installed. As aresult, the space management
module of the storage manager is correct, but not particularly efficient in space or time.

Gray and Reuter:" is agood place to start reading about some of the basics of storage management; much of
the basic design of the storage manager comes from ideasin this book.

Another resource is the Mohan papers® about ARIES. The storage manager implements ARIES recovery
and the B+-tree implementation is straight from Mohan’s ARIES/KVL® and ARIES/IM* papers.

Finally, much of the source code predates the C++ standard and standard template library (STL), so thereis
some duplication of functionality between the librariesin the storage manager and the standard template
library. Similarly, C++ exception handling is not used in the storage manager because it was non-existent
when much of this code was written.

2 Organization

The storage manager is a set of libraries. The software was designed for clean separation of functionality
into modules with the hope of maximizing unit-testing and software reuse. The organization of the
modules into files and directories is, to some extent, an historical artifact of SHORE, but, in generadl, it
reflects a desire to minimize physical (compile- and link-time) dependencies among files, libraries, and
unit tests.

07/12/99 Storage Manager Architecture (DRAFT) Page 3 of 42

The programming language is C++, and as much as possible, each class (or suite of classes) istested in
isolation. Many directories in the source tree contain a subdirectory calledt est s/ , which contains
unit-tests for the classes defined in the directory aboveit.

2.1 Configuring and building

There are compile-time configuration constants (e.g., page size) that control the configuration of the entire
package. The directory

« config/

contains templates for generated Makefiles and it also contains atemplate from which afile called

shor e. def ismade. Shor e. def iswhere compile-time constants are defined and where build-time
configuration options are set. For example, to configure the storage manager so that it uses a 32KB page
size, you must do as follows:;

cd config/

cp shore. def. exanpl e shore. def
vi shore. def

: | SM_PAGESI ZE

s/ 8192/ 32768/

The conventionisto put acomment inshor e. def . exanpl e for every configurable option, along with
acomment about that option’s purpose. Not all options described there are supported anymore. Not all
code enclosed in C preprocessor macro controls are described inshor e. def . exanpl e, either, since
some C preprocessor macros are defined by the Makefiles. The most obvious examples are the
architecture-dependent macros, such as SOLARI S2 and Spar c.

The software can be built on Solaris 2.5 and 2.6 using GNU Make and g++, imake, and Perl.

It can also be built on NT 4 using a suite of GNU tools, Perl, and the native VC++ 5.0 compiler, or using
the Developer Studio environment. The software does not come with a set of Visual Studio project files.

The source directories have some circular dependencies.

2.2 Conventions

2.2.1 Conventions used in this document
A convention used in this document isthat cour i er font isused wherever references are made to file
names, keyboard input, and code in the storage manager.

Descriptions of classesin this document are not complete; often constructors, destructors, and operators are
omitted from the descriptions here. This document is meant to be a companion to the source code.

2.2.2 Coding conventions

Early in thelife of the SHORE project, the storage manager used these conventions in the code, but the

conventions were not strictly held:

e Typesendin _t,asinsnsi ze_t, unlessthey are persistent, in which casethey endin_s, asin
sinfo_s.

e Manager classes (of which thereis generally asingleinstance) endin_masinl ock_m (thelock
manager).

e The names of public methods and data members do not start with an underscore, while the names o f
private ones do.

» Because namespaces were not part of C++ at the time, classes and enumerations were used to limit
global namespace pollution.

07/12/99 Storage Manager Architecture (DRAFT) Page 4 of 42

« The storage manager makes heavy use of named typesin place of primitive typeslikei nt, short.
Instead, snsi ze_t, slotid_t,andthelikeare used.
e |terator classesendin _i ,asinscan_i ndex_i , aniterator for scanning an index.

2.2.3 File naming conventions

Input for GNU Make are called Makef i | e, and are generated from | makefi | e.

One should never edit a Makef i | e. At thetop of the sourcetreeis a special file, GNUMakef i | e, which
is not generated, and can be edited. It starts the process of building the make files in the subordinate
directories.

Source filesincluded by other source files have . h suffixes, and all C++ sources arein fileswith. cpp
suffixes. This suffix was chosen so that the NT developer studio can identify C++ files.

Generated source filesend in _gen and astandard prefix. For example, some code generated for logging
residesinfiles| ogdef _gen. cpp and| ogf unc_gen. h.

Input files to Perl scripts, from which code is generated, have . dat suffixes.
Perl scriptshave . pl suffixes.

Include files that describe persistent data structuresend in _s. h, asthey contain descriptions of types that
endin_s.

2.2.4 Configuration conventions

C preprocessor macros control both the build environment through Makef i | esand the compilation
environment through the use of - Dmacr 0 and the #def i ned macrosinthefileshor e. def .

2.2.5 Working around compiler bugs

Thefilef ¢/ w_wor kar ound. h contains C preprocessor macros that both identify and, when possible,
work around compiler bugs. Comments near the macro definitions describe the bug. It isnot always
possible to work around a bug with a simple macro; in such cases, commentsin the code should identify
the nature of the bug and the work-around.

2.2.6 Unit-testing

Most directories have a set of unit tests. These are short programs that test one or more classes defined in
the containing directory. These tests can be run by invoking the shell script al | .
The unit tests are not built my the make files in the containing directory. One must descend to the test
directory and type

make
to build the tests.

2.2.7 Error codes

Each directory has one or more sets of error codes. An error code is an unsigned integer value that is
associated with an error message (character string). A set of error codesis a group of values that share a bit
mask. Sets are generated by a Perl script froma. dat file. Error codes are described in more detail
below.

2.3 Generated sources

07/12/99 Storage Manager Architecture (DRAFT) Page 5 of 42

Some of the sources in the storage manager are generated from Perl scripts. Most of the Perl code that is
used residesin various.. pl filesin the directory

« tools/

This directory also contains some scripts that are run on an occasional basis, such as those for updating
copyrights.

2.4 Source directory hierarchy

The directory
e src/
contains sources for four libraries, as follows:

e Common types: f c/

e SHORE threads: st hr ead/

* More common types. conmon/
e Storage manager: sm

3 Common types - fc/

Thislibrary, called libfc.a, contains template classes for linked lists, hash tables, for class-specific memory
allocation, reference-counted pointers, vectors of arithmetic values, and miscellaneous low-level functions.
Also included are support for extensible (generated) sets of statistics, and OS-specific statistics. Each layer
in the source hierarchy keepsits own statistics, but uses functions provided here.

Nothing in this directory is aware of threads, so none of the code here is thread-safe.

Theinclude filesin this directory are exported for client use. That is, they are copied to
i nstall ed/ i ncl ude with the make target “make install”.

Virtual tables

Thislibrary also contains some classes whose purpose is to present to servers certain low-level information
in such away that servers can easily turn the information into "virtual tables. There are some circular
dependencies among the source directoriesin order to support virtual tables, but the build mechanism takes
care of that, as described above.

The premise isthat a server will collect miscellaneous run-time information from the storage manager and
put that information in to atable (relation). The information gathered is from various and sundry classesin
the storage manager, some of them hidden deep beneath the server-storage manager API. To alow the
server access to the (sometimes private) data for these disparate classes, we provide a simple canonical
form (vt abl e_i nfo_array_t) towhich each class convertsits datafor the server to receive. For
example, when the server collects up-to-date transaction data from the storage manager it calls a storage
manager method (ss_m : xct _col l ect (vtable_info_array_t &t),whichinturn, visitseach
transaction instance and puts all the transaction data into a 2-dimensional array of values (a

vtable_ info_array t), t. Eacht[i] isavtable_info_t, whichrepresentsatupleor row
inthetable. T[i][j] isavaueinthecolumnj of thetable, and the domain of j isan enumeration
definedinvt abl e_enum h Every valueinthe tableisrepresented by a string; it isalready in string
form.

Files: vtable_info.h, vtable_ info.cpp, vtable_enum h, files generated by
tool s/stat.pl: *collect_gen.h

Error logging

07/12/99 Storage Manager Architecture (DRAFT) Page 6 of 42

Here you will find a set of classes, Er r or Log and _debug, which provide low-level debugging (tracing).
Thisisfor logging to an OSfile, not to a database storage structure or to arecovery log. These classes are
meant to provide a service like the Unix syslog service with C++ ostream syntax. For example, the storage
manager creates an instance of an error log, which it uses as follows:
sm evel _O::errlog->clog << error_prio
<< “ss_mcannot be instantiated nore than once.”
<< flushl;
The message will be sent to the log only if the storage manager’s runtime configuration option
smerrlog_|evel
is higher than or equal to the level of the message. The levels are represented by the enumeration
enum LogPriority {
| og_none, log_energ, log fatal, log_alert, log_internal,
log error, log warning, log info, |og debug, |log all

3
The I/O manipulatorserror _pri o, warning_prio, info_prio,etc,
correspond to the log priorities. The storage manager uses only these three I/0
manipulators in its messages.

A specid log,
class _ _debug : public ErrLog { ... }
is used when the storage manager is built with - DDEBUG (which is turned on by setting
#def i ne DEBUGCODE ONinthe configuration fileshor e. def). The macros
DBE) and DBGTHRD()
send their output to this class along with the line number and file name of the source file
in which the macro appears. The class printsto afileonly if the class's source file list
contains the name of thefile in which the macro isused. Thisalows tracing to turned on
and off on a per-source file basis. The destination for tracing messages is determined by
set env DEBUG FI LE <fi |l enane>
and the sourcefilelist is determined by the value of the environment variable
DEBUG_FLAGS, for example:
setenv DEBUG FLAGS “sm cpp vol.h”

Files: errlog.h, errlog.cpp, errlog_s.h, debug.h, debug.cpp

Error codes and return codes

Errors are reported from functions by returning an instance of classin thislibrary, caledw rc_t, with
thealiasr c_t . Thisclass supports stack traces and integer-to-string mappings for library-specific error
sets. The size of the stack trace is a compile-time option (max_t r ace enumeration constant in

w error.h

Aninstancew rc_t isthesizeof apointer. Itis, infact, areference-counted pointer to an instance of
w_error_t. The w_error _t keepsthe stack trace and error code. Operationsonw _rc_t are
trandlated to operations on the underlyingw_error _t . If afunction returnsaninstanceof aw rc_t,
and that return value is never checked, the destructor for the return value prints an error message: “Error not
checked”. Thisis mean to encourage complete error-checking on the part of programmers.

Files: wrc.h, wrc.cpp, werror.h, werror.cpp, wsptr.h

Dynamic memory allocation

The classes
e auto_delete t,and
e auto_delete_array_t

07/12/99 Storage Manager Architecture (DRAFT) Page 7 of 42

are used to clean up heap-allocated objects when leaving a scope, similar totheaut o_pt r classtemplate
in the C++ standard template library.

Files: w_autodel.h

Factories

Throughout the storage manager, there are examples of classes of fixed size that are instantiated often. A
set of template classes allows the storage manager to create factories that allocate a set of instancesto dole
out at alater time. Thetemplatew_f ast new_t does this, with the intent of avoiding checkerboarding
memory in the standard library malloc/free space. Thetemplate classw_t hr eadnew _t further allows
the allocated space to be accounted for, on a per-thread basis.

Both of these classes are derived from a common base class, w_f act ory_t , which can be configured to
do some detailed accounting of the allocated memory. When compiled with

#defi ne | NSTRUVENT_MEM ALLCC,
this class calls two callback functions to account for the space allocated, and it links together al allocated
memory. The metadatain the memory header contains a“heap identifier”, of the form

w_heapi d_t
whichisassigned and used by the callback functions.

Thislibrary defines the callback functions
extern w heapid t w shore_thread_all oc(
size_t bytes,
bool is _free);
extern void w shore_thread_deal | oc(
size_t bytes,
w_heapid_t h);

The callback functions defined in this library account for all allocations as allocated from a global heap,,
whichisto say that it keeps a single counter for all allocations; w_shor e_t hread_al | oc() aways
returns the heap id

w_heapid_t w no_shore_thread_id,
andw_shor e_t hread_deal | oc() ignoresits heap identifier argument.

Thethreads library contains a different implementation of the callback functions, which account for the
allocation and freeing of space in the running thread, and use the identifier of the running thread for the
heap identifier.

These classes contain the necessary methods to collect the memory-allocation statistics into a virtual table.

When building a storage manager on NT with Visual Sudio, care must be taken not to link in the f ¢/
version of the callback functions.

Files: w factory.h, wfctory.cpp, wfactory_fast.h, wfactory_fast.cpp,
w factory thread. h, w factory_ thread.cpp, w shore_alloc.h,
w_shore_al l oc. cpp

OS statistics

Theclassuni x_st ats can be used to start and stop the collection of the resource usage statistics
available on different Unix flavors. An example of itsuseisinf c/tests/ stats. cpp.

| Files: unix_stats.h, unix_stats.cpp

Bitmaps

| Files: w_bitmap.h, w_bitnap.cpp, w bitmap_space.h

07/12/99 Storage Manager Architecture (DRAFT) Page 8 of 42

Lists

The storage manager makes heavy use of doubly-linked lists, provided by
tenpl ate <class T> class w.list_t

and its companion iterator
tenplate <class T> class wlist_i.

To use these lists, a structure or class must contain a
w_link_t

for each list that it wantsto be put on at any onetime. For example,
struct foo {

i nt bar[10];
short bar none;
w link t link;

s
The list keeps track of the offset of the link that it will use, so that offset is given when thelist is
constructed:

typedef w list_t<foo> foolist;

foolist FL(offsetof(foo, link));

foo* F = new foo;

FL. push(F); // put F on the front of the Iist
/Il OR

FL. append(F); // put F at the end of the list
Toiterate 0 erthehst

_I| _i<foo> i (FL);

whil e (F =i.next())) {

Il use F

To remove items from the list:
F =FL. pop();

Lists can be ordered, asimplemented by the subclassed templates
tenplate <class T, class KEY> class w_ ascend |ist _t;
tenplate <class T, class KEY> class w descend |ist _t;

Such alist is constructed by giving the offset of akey aswell as the offset of the link:
w_descend_li st _t<foo,short) list(
of f set of (f oo, barnone),
of f setof (foo, Iink));

Thetest program
tests/list3.cpp
demonstrates the use of these lists.

Files: wlist.h, wlistmh

Queues

Circular queues are implemented by the classes
tenpl ate <class T> class w _cirqueue_t;

which, unlike the lists, does not link its contents; rather it maintains an array of pointers. The size of the
array is given when the queue is constructed. The iterators for a queue are

tenpl ate <class T> class w cirqueue_i;

tenpl ate <class T> class w_cirqueue_reverse_i;
These classes are demonstrated by the test programs

tests/cqgl. cppand tests/cqg2. cpp.

| Files: w_cirqueue.h

07/12/99 Storage Manager Architecture (DRAFT) Page 9 of 42

Timers

Files: wtimer.h, wtiner.cpp

Shared memory

The Unix implementation of the storage manager uses shared memory for communication among

processes. The system calls for allocating and attaching shared memory are encapsulated in aclass
w_shmem t .

Files: w shnmem h, w _shmem cpp

Pseudo-random numbers

Some of the test programs (i oper f and ssh) use pseudo-random numbers. The class
random gener at or encapsulates the platform-specific differencesin the random-number library
functions.

Files: w random h, w random cpp

Heaps

Files: w_heap.h

4 SHORE threads - sthread

The storage manager uses a home-grown threads package that is derived from NewT hreads (from the
University of Washington). The API is a portable OS interface. The threads are dynamically allocatable,
and their maximum stack sizes may be determined at the time they are allocated. The library contains a
main thread, an idle thread, and a prioritized ready queue for all user-defined threads. All scheduling is
non-preemptive. Thislibrary runson NT, but it is not a mapping to native NT threads.

Thislayer has been ported to the following Platforms:
e Solaris 2.5/Sparc, x86
e SunOS/Sparc
« AIX4.1/RS6000
e Windows NT/x86

4.1 Non-blocking I/O

The first implementation ran on severa variants of Unix, providing non-blocking 1/0 by forking off
processes that communicate via shared memory. Under NT, the cooperating processes are NT threads
within the server process. For each disk, a separate "di skr w" (disk read-write) process (or NT thread) is
forked by the storage manager process. Under Unix, thereisalso a master di skr wprocess that cleans up
after catastrophic failures. (It does not do recovery or restart -- it just cleans up shared memory.) On Unix,
thedi skr w process communicates with the server process using a shared-memory queue and apipe. The
pipeis not used to convey information other than to “kick” the server into checking the shared-memory
gueues. Process synchronization on the shared-memory queue is accomplished with atest-and-set
instruction, if the architecture has one, else with spin locks (at most two processes are vying for any one
critical section). On NT, sincethe di skr wand server processes share address spaces, there is no need for
the queues and pipes, but because the port to NT isa“shallow”, i.e., minimal-effort, port, thereis a pipe
between threads, implemented over TCP, which allows the threads layer to work, albeit with unnecessary
overhead.

Files: diskrw h, diskrw cpp, sthread.h, sthread.cpp, spin.h, tsl.h,
tsl.S

07/12/99 Storage Manager Architecture (DRAFT) Page 10 of 42

4.2 Thread synchronization
The threads package provides synchronization services that are used throughout the storage manager:

e« snutex_t amutua exclusion variable (lock, mutex variable, binary semaphore) whose methods are
acqui re(ti meout) (wait, P) and r el ease() (signal, V). Only aholder of (athread that has
acquired) amutex can releaseit. A mutex has at most one holder at any time.

e scond_t acondition variable (alist of waiters, protected by a mutex of the caller’ s choice), whose
methodsarewai t (snmut ext _t, tineout), signal (),
broadcast (),andbool is_hot (). Like condition variables described by Silberschatz®,°,
signaling ascond_t when no threads are waiting is a null operation. Any thread can signal a
condition variable.

The implementation assumes a uniprocessor environment, so waiting on a mutex or a condition variable
always means being put on alist; spinning is not used.

Files: sthread.h, sthread.cpp

4.3 Statistics

The library keeps some statistics that help debugging and performance analysis. These statistics are not
thread-safe, hence, they are approximate. The statistics are kept in aglobal variable
extern sthread_stats SthreadStats;

The statistics kept include the number of

 |/Osystemcals

« select() system calls (on Unix)

e timesathread awaited alatch

e timesathread awaited a condition variable

e timesathread awaited a mutex

An example of itsuseisin
tests/ioperf.cpp

Files: sthread stats.dat, sthread stats.cpp

4.4 1/0O performance

The test directory contains several unit tests and one very useful program, i oper f .

loperf is an example of a program that uses the threads for non-blocking 1/0 in a minimal way, so that it is
easy to measure the performance of 1/0 through the threads package. By default, it performs sequential
I/0. If itsnameisr andomni oper f (by way of ahard link or arename), it performs pseudo-random 1/O
instead.

Files: tests/ioperf.cpp

5 Common Types - common/

Thislibrary (I i bCOMMON. a), contains some types that use types defined by the threads library.

07/12/99 Storage Manager Architecture (DRAFT) Page 11 of 42

It was originally meant to contain types that are shared with client-side code (clients of value-added
servers). It also contains some things that are here only for historical reasons, and could just aswell bein
i bFC. a.

Hash table

The logical-1D service of the storage manager uses a fixed-sized, thread-safe hash table with LRU
replacement.

Files: hash_lru.h, hash_Iru.cpp

Transaction IDs

Files: tid_t.h, tid_t.cpp

Data vectors

Files: vec_t.h, vec_t.cpp, vec_nkchunk.cpp, zvec_t.h

Basic types

Fil es: basics.h, basics.cpp, devid_t.h, devid t.cpp, vid_t.h, vid_t.cpp,
stid_t.h, stid_t.cpp

Options

Files: opt_error.dat, option.h, option.cpp

Latches

Besides mutexes and condition variables, the storage manager uses latches to synchronize multi-thread
accessto memory. The latch implementation islocated in conmron/ , although it will probably be moved
tost hread/ .

A latchis, like a database lock, can have more than one holder, and can, held in shared or exclusive mode.
Like a mutex, alatch does not perform deadlock detection when athread waitson it. Latchesare
implemented by the

class latch_ t {

publi c:
| atch_t(const char *const nane=0); // |atches
/1 are nanmed
~latch_t();
wrc t acquire(latch node t m tineout = WAIT_FOREVER) ;
void release();
wrc t upgrade_i f _not bl ock(bool & woul d_bl ock);
bool is_|ocked() const;
i nt | ock_cnt () const;
| at ch_node_t node() const;
bool is _hot() const;
i nt num hol ders() const;
bool is_mine() const;

const sthread t * holder() const;

07/12/99 Storage Manager Architecture (DRAFT) Page 12 of 42

At most 4 threads can hold a single latch (in shared mode, of course) at any onetime. Thislimitisa
compile-time constant.

| Files: latch.h, latch.cpp

Theclassaut o_r el ease_t providesfor automatic releasing of a mutex when leaving scope.

| Files: auto_release.h \

Key-valuelocks

Files: kvl _t.h, kvl _t.cpp

Regular expressions

Because the options-processing code uses regular expressions, a copy of freely-available GNU regular
expression code isincluded here. The code has been modified only to suit the storage manager build
environment.

Files: regex.h, regex.posix.h, regex2.h, regex_cclass.h, regex_cnane.h,
regex_engine_i.h, regex_utils.h, regconp_i.h regerror_i.h, regconp.cpp,
regerror.cpp, regex.posiXx.cpp, regex_engine.cpp, regexec.cpp,

regfree. cpp

Logical IDs

Thelogical IDs are:
e volumeID: implemented by | vi d_t
e recordID implemented by cl ass | rid_t,whichcontainsan! vi d_t and aserial number,
whichisimplementedinseri al _t.

Serial numbers are 32- or 64-bit (determined by a compile-time option) quantities that identify records on a
volume. A logical record ID isunique. Each volume that is formatted for use with logical |Ds contains
two indexes. One maps serial numbers to physical record 1Ds, and the other is the reverse mapping. Using
logical IDs accomplishes two things, at some expense:
1. Logical IDsare smaller than physical 1Ds, so some space can be saved for databases that include
many intra-database references.
2. Databasesusing logical IDs can be reorganized without requiring a complete dump and rel oad
operation.
The expense of using logical IDs comes from
1. the space overhead for the mappings, and
2. thetime overhead for maintaining the mappings.

Files: lid_t.h, lid_ t.cpp, serial_t.h, serial _t.cpp, serial_t _data.h \

6 Communication package (missing)

Under the aegis of the Paradise project, a communications library was written to support low-level inter-
process, inter-machine communications. The source code for the communications library is not available
to the public, but it is mentioned here, because the storage manager’ s support for distributed transactions
was built on this package. Lest areader consider inserting his own communications library, what followsis
abrief description of the communications package that was used.

07/12/99 Storage Manager Architecture (DRAFT) Page 13 of 42

The communications library provides a communications model based on Endpoints, which are similar to
Mach ports. Messages can be passed among threads and among processes, with low overhead in space and
time. Endpoints can be shipped along with messages. Delivery isreliable and ordered between a (source)
thread and a (destination) endpoint. The API contains "death notifications' - a registration mechanism that
givesreliable failure detection.

The communication service assumed by the storage manager is as follows:
cl ass CommByst em
a handle on the basic communications subsystem
cl ass NanmeServi ce;
ahandle on a service for registering endpoints by name and for looking them up
cl ass Buffer;
aplace in which to put messages to be sent, and from which to extract those that are received
cl ass Endpoi nt;
an entity that sends and receives messages. Endpoints are not connected to form streams, rather,
each message is sent to an endpoint asif it were anonymously sent --without any notion of a
source endpoint
cl ass Endpoi nt Box;
acollection of Endpoints that can be sent along with messages.

The portions of these classes that are used by the storage manager are;
class Buffer {
publi c:

static Buffer& null;

Buffer();

Buf fer(int Iength);
Buffer(void *addr, int |ength);
~Buffer();

Buf f er &oper ator=(const Buffer & ron);// copy

i nt m engt h() const; // returns size() (nsg |ength)

b

cl ass Endpoi nt Box {

publi c:
Endpoi nt Box(unsi gned box_size = default_size);
Endpoi nt Box(const Endpoi nt Box &box);
~Endpoi nt Box() ;

Endpoi nt Box &oper at or=(const Endpoi nt Box &box);

// Box is an array with origin O
w_rc_t set (unsigned n, const Endpoint &t);
/1l put “it” inthe “n"th slot in the box
wrc t get (unsi gned n, Endpoint &it);
/1 get an endpoint fromthe “n"th slot
// and return it in “it”

unsi gned count () const; // # endpoints in box

s

cl ass NaneService {
publi c:
static wrc t startup(CommBystem &, istream &,
NanmeService *&);

07/12/99

s

Storage Manager Architecture (DRAFT) Page 14 of 42

~NaneServi ce();

/'l register a nane
wrc t enter (const char *nanme, Endpoint ep);

/1l create an endpoint associated with a nane
wrc_t | ookup(const char *name, Endpoint &ep);

/1 un-register a name
wrc t cancel (const char *nane);// renove

/1 don’t need any nore nanme service
w_rc_t shut down() ;

cl ass CommBystem {
publi c:

b

/'l locate the CormSystem return a ptr to it
static wrc t startup(CommByst em * &ne) ;
wrc t shut down() ;

/| Create anonynous endpoints

w_rc_t make_endpoi nt (Endpoint & t);
/1 ascii representations of endpoints:
wrc t make_endpoi nt (i stream &spec_t ext,
Endpoint & t);
wrc_t get _spec(Endpoi nt ep, ostream &spec_text);
ostream &print(ostream & const;

cl ass Endpoint {
publi c:

Endpoi nt () ;
~Endpoi nt () ;

/1 send nsg TO this endpoint, and encl ose the
/1 box of endpoints with the nessage
wrc_t send(Buffer &nmsg,

Endpoi nt Box &box = enptyBox) const;

/1 receive a nessage bound for this endpoint,
/1 and collect the endpoints enclosed in the box
wrc_t recei ve(Buffer &nmsg,

Endpoi nt Box &box) const;

/1l endpoints are reference-counted

w_rc_t acquire() const;// increment ref count
wrc_t rel ease() const;// decrenent ref count
wrc t destroy();//clear ref count

/1 1f this endpoint “dies” (we can’t send to it

/1l anynore), send the nessage in “buffer” to

/1 the endpoint “target”

wrc t noti fy(Endpoi nt & arget, Buffer &buffer);

/1 undo the above action -- no longer interested
/1 in death notification

07/12/99 Storage Manager Architecture (DRAFT) Page 15 of 42

wrc t stop_notify(Endpoint &t arget);

bool is_valid() const
bool operator==(const Endpoint & t) const;
bool operator!=(const Endpoint & t) const;

ostream &print (ostream &s) const;

b

7 Storage Manager - sm/

The storage manager library (I i bSM a) isthe largest library in the group. Because it encompasses a lot of
functionality, we break it into a set of smaller, somewhat inter-dependent modules. Thereis no direct
correspondence between modules (identified below) and source files, although the names of the source files
should be somewhat indicative of their content.

Before we delve into the various parts of the storage manager, afew words are in order concerning the
storage manager’ s use of threads, interactions with clients and other servers, and classinstantiations.

7.1 Threads

The storage manager isalibrary. The server (code that usesthe library) is responsible for its interactions
with clients and cooperating servers. For the server to accomplish this without blocking the entire process,
the server must use the threads library that the storage manager uses.

It is assumed that the server will run as a collection of threads (of the SHORE threads variety).
Some of those threads will be invoking the storage manage; others might not. For athread to use any
storage manager functions, it must be a specia thread: one derived from the class

snt hread_t
which isderived from st hr ead_t , the basic SHORE thread. Before any storage manager services can be
used, the server will create a single instance (one instance in the address space of the process) of the storage
manager:

sm= new ss_n();
At thistime, the storage manager performs recovery and creates instances of the various manager classes
that compose the storage manager: it creates alock manager, a buffer pool manager, etc. Some of these
managers create instances of snt hr ead_t threads that run in the background. Thereafter, all storage
manager activity occursin server threads (presumably acting on behalf of clients).

Synchronization among threads is accomplished withsrmut ex_t, s _cond_t (from the threads
package) and | at ch_t (built using snut ex_t) classes.

Files: snthread. h, snthread.cpp, snthreadstats.cpp

7.2 ldentifiers

The storage manager supports both logical and physical identifiers. This document describes only the
physical identifiers. Each classinthe API has pairs of methods -- one method that takes logical identifiers
and one that takes physical identifiers. Thelogical ID methods can be understood from the descriptions of
physical-ID methods in this document.

7.2.1 Physical IDs

The physical IDsthat are used throughout the storage manager are:

07/12/99 Storage Manager Architecture (DRAFT) Page 16 of 42

e volumelD: givento avolume when the volume is formatted. Implemented by the
class vid_t.

« dorelD (fileID, index ID): identifiesall storage structures. Implemented by thecl ass stid_t,
which containsavi d_t and a store number, snum t .

. p@h e_lcljD: implemented by thecl ass | pi d_t, whichcontainsasti d_t and apage number,
shpid_t.

e record ID: implemented by thecl ass ri d_t, whichcontainsal pid tandaslotid t.

7.2.2 Logical IDs (lid_m)

The data types for logical |Ds are defined in the common library and include files (g.v.).

7.3 Disk space management (vol_m, io_m)

The “volume manager” manages space on avolume. The storage manager API permits extensible volumes,
but the implementation is limited to one volume per operating system disk partition or file.

The API:

 Avolumeisaset of pagesonasingle “logical device”, which can
contain any number of volumes, depending on how it is formatted.

* A“logical device” consists of one or more physical devices.

* A physical deviceisaUnix raw partition or an OSfile.

The IMPLEMENTATION:

e at most one volume per logical device.
« alogica device == one physical device.

All pages are the same size (a compile-time constant). Thisisan assumption that pervades the storage
manager.

The storage manager modules use different types of pages. Each module derives its own private page types
from a common base class. The common base class manages the common page header and the slot table
for the page. Thus, every pageis aslotted page, even though some managers use only one slot. (This gives
rise to some confusing terminology in the storage manager: "dotted page" usualy refersto file pages only.)
The volume manager allocates and deallocates pages without regard to their type. The volume manager is
responsible only for afew derived page types: those that contain only metadata for managing the allocation
and

deallocation of pages.

Together, each page type and the common base class for pages account for each byte on the page. The
accounting functions distinguish metadata from user data from bytes wasted on alignment This permits a
complete accounting of every byte on avolume.

The volume manager arranges pages on avolume into "stores'. Pages are allocated to storesin “extents’
(groups of contiguous pages). Hence, the unit of reservation is an extent, while the unit of allocation isa
page. Thereis NO clustering support in the storage manager other than extents. The number of pagesin an
extent is a compile-time constant; the default is 8.

Regardless of its page type, every reserved or allocated page residesin astore. Each store has a property
that determines the way updates to the store are logged.

07/12/99 Storage Manager Architecture (DRAFT) Page 17 of 42

At any given time, each page is either fully logged (all updates to the page are logged) or not logged (no
updates to the page are logged). The allocation metadata are kept on pages that are always fully logged.

Each store has alogging property whose meaning can be expressed in terms of the logging properties of the

pagesin the store, as follows:

e Regular: aregular store’s pages are fully logged The storeis marked withast ore_fl ag_t value,
st _regul ar.

e Temporary: atemporary store's pages are not logged. A temporary store can persist between
transactions. It isremoved on mount or dismount of its volume. The store flag for atemporary store is
st _tnp.

» Load: astore created with this property starts out looking like atemporary store, but it is changed to a
regular store when its creating transaction commits. This change is enforced by the storage manager.
Such astorehasastoreflagof st _| oad fil e.

« |nsert: astore cannot be created with this property. A regular store can be changed to an insert store
(st _insert _file),whichallowsnewly alocated pagesto be unlogged until commit, and
committed pagesto beregular. Only storesthat are used for files can be used this way (stores used by
indexes cannot).

This permits bulk-loading with minimal logging, followed by fully-logged updates, followed by large,
minimally-logged append operations. Changing the logging property of a store does not require updating
each page in the store.

A transaction creates and deletes stores when it creates and del etes storage structures. Deletion of storesis
postponed until the transaction commits so that the pages allocated to the deleted store remain reserved. lest
the deleting transaction aborts. The deleting transaction could (in theory) reallocate such pages, however
that is never done. Instead, when a store is deleted by atransaction, the head of the store is marked “for
deletion”, and the store’ sidentifier is appended to alist held by the transaction. When the transaction ends,
the stores on the list are destroyed if the transaction commits, or not it the transaction aborts. Stores that
aremarked st _| oad_fil e by atransaction are also put on alist held by the transaction. At commit
time, the stores on thislist are re-marked so they become st _r egul ar . Because these are logged
actions, and they occur if and only if the transaction commits, the storage manager guarantees that the
ending of the transaction and the re-marking and deletion of storesisatomic. Thisis accomplished by
putting the transaction into astate xct _f r eei ng_space (see Transaction manager), and writing alog
record that indicates the state change. The space is freed, stores are converted to regular stores as needed,
and afinal log record is written to indicate that the transaction hastruly ended. In the event of acrash
while atransaction is freeing space, the recovery module searches all the store metadata for stores marked
“for deletion” and deletes those that would otherwise have been missed in the redo phase.

Pages are reserved for astorein unitsof ss_m : ext _sz, acompile-time constant that indicates the size
of an extent. An extent isaset of contiguous pages. Extents are represented by persistent data structures,
ext node_t , which are linked together to form the entire structure of astore. A st node_t holds
metadata for a store and sits at the head of the chain of extents that forms the store, and the extentsin the
store list are marked as having an owner, which is the store id of the store to which they belong. A storeid
isanumber of typesnum t , and an extent id isa number of type ext num_t . Scanning the pagesin a
store can be accomplished by scanning the list of ext node_t s. Each extent has a number, and the pages
in the extent are arithmetically derived from the extent number; likewise, from any page, its extent can be
computed. Free extents are not linked together; they simply have no owner (signified by an
extnode_t::owner == 0).

7.3.1 Page allocation and deallocation

Searching for free extents is around-robin scheme that involves inspecting the ext node_t structureson a
volume. Since these structures sit at the head of the volume on pages dedicated to them, such searches are
relatively inexpensive. Similarly, searchesfor freest node_t structures are limited to afew pages at the
head of avolume. When avolume isformatted, the first several pages of the volume are dedicated to store

07/12/99 Storage Manager Architecture (DRAFT) Page 18 of 42

and extent metadata; the number of pages so dedicated is a function of the size of the volume given to the
format method by the server. Store numbers and extent numbers are 32-bit unsigned values, so thereisa
limit of 4 billion of each on avolume.

Page allocation depends on a policy that differs with context: When objects are appended to afile by
means of the append-object APl (append_fi | e_i), pages are alocated at the end of the file by locating
the last extent and allocating pages in that extent, and adding extents as needed. When objects are created
by any other APl method, extentsin the file are searched and unallocated pages in allocated extents may be
used. Such pages are found by looking in a cache of recently-used pages, and by alinear search through
thefileasalast resort. Before resorting to alinear search, the storage manager consults histogram (hints)
that it keeps for recently-used files, to see if asearchislikely to yield anything.

Pages and extents that are freed by atransaction are kept in alist for deferred deall ocation when the
transaction commits. This prevents other transactions from allocating such pages and extents and thereby
interfering with rollback.

7.3.2 One-page storage structures

Creating afile or an index normally resultsin allocating a minimum of one extent , since the storage
structures allocate stores An extent is a set of contiguous pages, so, this can results in waste if the storage
structure will never need so many pages. To avoid this waste, a volume has a specia store whose pages
can be alocated to storage structures individually (rather than by the extent). Thisisused by the B-tree
implementation to allow indexes to start out small (one page) and grow to a store when needed. (Thiscan
only be doneiif logical IDs are used for the index, since the index is known by its store ID when physical
IDsare used.) This mechanism was put into place for the higher layers of SHORE, which implemented
Unix-style directories as small B-trees.

Files: smio.h, smio.cpp, vol.h, vol.cpp

7.3.3 Space reservation on a page

Because fine-grained locking (dlot-level -- i;.e., recordsin files) is the default, special care must be taken to
reserve space on a page when dots are freed (records are deleted) so that rollback can restore the space on
the page. In the case of B-trees, thisis not a concern, since undo and redo are handled logically -- entries
can bere-inserted in a different page. But in the case of files, records are identified by physical ID, which
includes page and slot, so records must be reinserted just where they first appeared. Like Mohan's scheme’,
the transaction freeing space can re-use the space it freed. Unlike Mohan’s scheme, this al gorithm does not
distinguish contiguous free space and non-contiguous free space, nor doesit use the Commit_L SN ideato
identify committed data.

Holes in a page are coalesced (moved to the end of the page) as needed, when the total free space on the
page satisfies a need but the contiguous free space does not. Hence, arecord truncation followed by an
append to the same record does not necessarily cause the shifting of other records on the same page.

Space-reservation metadata are kept in a
cl ass space_t {
publi c:
i nt usabl e(xct _t* xd);

rc_t acquire(int ant, int slot_bytes,
xct _t* xd, bool do_it=true);
void release(int ant, xct_t* xd);

void wundo_acquire(int ant, xct_t* xd);
void wundo_release(int ant, xct_t* xd);

07/12/99 Storage Manager Architecture (DRAFT) Page 19 of 42

private:
tid_ t _tid;
int2 t _nfree;
int2 t _nrsvd;
int2 t _Xct _rsvd;
s

When atransaction destroys a record, it releases the space for the record’ s slot by calling the method
rel ease(amount _in_bytes, transaction_ptr). Thespace_t keepstrack of

e thenumber of free bytes on the page (_nfr ee)

e the number of reserved bytes on the page (_nr svd)

« thetransaction ID of the youngest active transaction freeing space onthispage (_ti d)
« thenumber of reserved bytes freed by the youngest transaction (_xct _rsvd).

The free byte count is maintained for all page types. Therest are kept only for those page types that require
Space reservation.

When the youngest transaction to reserve space on a page commits, the reserved space on that page can be
released, and thepage’'s _tid, _nrsvd, and _xct_rsvd arecleared.
A new page has no pre-allocated slots. Creating arecord consists of

« find an alocated but unused dot, if thereis one, and acquire space for the record

« if there are no unused slots on the page, alocate a new slot -- this means acquire space for the

record and for the dot.

Destroying arecord consists of releasing the space for the record and marking the slot free. Space for the
slot is never released because slots that are in use must keep their dot IDs (array indices).

During rollback, atransaction can use any reserved space. During forward processing, atransaction can
use any space that it reserved. The space that was reserved by atransaction is known only if that
transaction is the youngest one reserving space on the page, so this scheme does not always allow every
transaction to make the maximum use of its reserved space on a page, but this scheme is simple and
requires very little overhead on the page, while guaranteeing that transactions can roll back and reclaim
whatever space they need on each page.

None of the changesto metadatain space_t arelogged. Instead, the operations of freeing a slot and
allocating aslot are logged (with log record typespage_mar k and page_r ecl ai m respectively).

Fil es: page.h, page.cpp, page_s.h

7.4 Buffer manager (bf_m)

The buffer manager is the means by which al other modules (except the log manager) read and write
pages. A pageisread by issuing af i x method call to the buffer manager. If the page requested cannot be
found in the buffer pool, the requesting thread blocks, waiting for a cooperating process or thread to read in
the page.

On Unix, the buffer poal is in shared memory, where cooperating processes can find and place pagesin
response to read and write requests. On NT, acooperating NT thread performsthe read. The buffer pool's
sizeisarun-time configuration option. All frames in the buffer pool are the same size, and they cannot be
coal esced, so the buffer manager manages a set of pages of fixed size, and all cooperating processes trade
in pages of the given size.

The buffer manager forks background threads to flush dirty pagesto their respective disks. It makes an
attempt to avoid hot pages and to minimize the cost of 1/0 by sorting and coal escing requests for

07/12/99 Storage Manager Architecture (DRAFT) Page 20 of 42

contiguous pages. (Thisisthe extent of disk scheduling that is done: the di skr w process'thread does not
do disk scheduling.) Groups of contiguous pages are written to disk in a single vectored write request.
Statistics kept by the buffer manager tell the number of resulting write requests of each size.

The buffer manager writes dirty pages even if the transaction that dirtied the page is still active (steal
policy). Pages stay in the buffer pool aslong as they are needed, except when chosen as a victim for
replacement (no force policy).

The replacement algorithm is clock-based (it sweeps the buffer pool, noting and clearing reference counts).
Thisis acheap way to achieve something close to LRU; it avoids much of the overhead and mutex
bottlenecks associated with LRU.

7.4.1.1 Fixing pages

The buffer manager maintains a hash table that maps page IDs to buffer frame control blocks (bf cb_t),
which in turn point to frames in the buffer pool. The bf cb_t keepstrack of the page in the frame, the
page ID of the previously-held page, and whether it isin transit, the dirty/clean state of the page, the
number of page fixes (pins) held on the page (i.e., reference counts), the recovery LSN of the page (see Log
manager, Checkpoints, below), etc. The control block also containsalatch. A pageisawaysfixedina
latch mode, either LATCH _SH or LATCH _EX. Page fixes are expensive (in CPU time, even if the pageis
resident.

Each page type defines a set of fix methods that are virtual in the base class for all pages. The rest of the
storage manager interacts with the buffer manager primarily through these methods of the page classes.
The macros MAKEPAGECODE are used for each page subtype; they define all the f i x methods on the page
insuch away that bf _m : fi x() isproperly calledin each case.

static rc_t fix(
page_s*& page,
const lpid té& pid,
uint2_ t t ag,
| at ch_node_t node,
bool no_read,
store_flag t& out _stfl ags,
bool ignore_store_ id = fal se,
store _flag_t stflags = st_bad);

Fi x() looksup the pageidentified by pi d in the buffer pool, reading the pagein if necessary. Thet ag
indicates the type of page this page should be (or will become), node indicates the latch mode to use when
latching the page (frame). No_r ead, if true, prevents the buffer manager from reading in the pageiif it's
not found. Thisallowsthe caller to grab a page frame and immediately format the page in that frame. Itis
used when pages are being allocated. Theout _st f | ags iswhere the buffer manager returns the flags
that describe the logging characteristics of the store to which the page belongs. Thisis a performance hack
-- it allows the storage manager to avoid excess |ooking-up of store flags, which might entail reading
another page (the page containing the store header). If i gnor e_st or e_i d istrue, the buffer manager
allowsthe store ID on the page to differ from that in the page ID given. This happenswhen apageis
deallocated from one store and is allocated to another. The page is not always written to disk after the
deallocation. (For example, when a store is destroyed, rather than visit each page in the store to change the
store ID on the page, the head of the store is marked free, and the pages are updated when they areread in
by the buffer manager.) When a new page is being allocated and formatted, af i x() call is madeto
allocate aframe for the page, and the new store flags are passed to the buffer manager inthat call. The
buffer manager keeps track of the store flags for each page (thisis kept in the control block) because the
buffer manager isresponsible for ensuring the WAL protocol is used; thisinvolves inspecting the LSN on
each page, but pages of temporary files do not have legitimate L SN, since changes to those pages are not

07/12/99 Storage Manager Architecture (DRAFT) Page 21 of 42

logged. All this means that the buffer manager has to treat some pages as special cases, and those cases are
detected by inspecting the store flags for a page.

If the pageis still in the buffer pool, arefix is faster than afix:

static rc_t refix(
const page_s* p,
| at ch_node_t node) ;

Likewise, if a pageisfixed, latched in share mode, and an exclusive latch is needed, it is preferable to
upgrade the latch than to unfix the page and fix it again in the desired mode:

static void upgr ade_| at ch(
page_s*& p,
| atch_node_t n;

When unfixing a page, the caller determines whether the page is to be marked dirty. The caler also has an
opportunity to fool the clock algorithm by setting the ref “bit” to something other than the default:

static void unfi x(
const page_s*& buf,
bool dirty = fal se,
i nt refbit = 1);

To mark a page dirty without unfixing the page, use the following, which is used by the generated logging
code:

static rc_t set _dirty(const page_s* buf);
The following methods allow pages or sets of pages to be discarded from the buffer pool without being

written to disk One can discard asingle page, all the pages in the buffer pool that belong to a given store or
volume, or the entire buffer pool.

static void di scard_pi nned_page(

const page_s*& buf);
static rc_t di scard_store(stid_t stid);
static rc_t di scard_vol une(vid_t vid);
static rc_t discard_all ();

One or more may be forced to disk (and discarded from the buffer pool if the argument f | ush ist r ue):

static rc_t force_store(
stid_t stid,
bool flush = fal se);
static rc_t force_page(
const lpidté& pid,
bool flush = fal se);
static rc_t force_vol ume(
vid_t vi d,
bool flush = false); static
rc_t force_all (bool flush = false);

7.4.1.2 Buffer manager internals

Unless you are hacking the buffer manager, you can safely skip this section.

07/12/99 Storage Manager Architecture (DRAFT) Page 22 of 42

The buffer manager implementation is split into two files, bf. cpp and bf _core. cpp.

Bf _core. cpp containsthe thread-safe hash table implementation, which takes care of latching the
pages. The following methods of class bf _cor e_m bear discussion. Thetype bf pi d_t isthe buffer
manager’ s notion of apage ID. The buffer manager uses bf pi d_t to override the oper at or == for page
I Ds because in the context of the buffer manager, pages are identified by volume 1D and page number only;
the store ID is hot germane, and if used in a comparison, yields errors because pages can move from one
store to another.

wrc t find(
bfcb t*& ret,
const bfpid t& p,
| atch_node_t node = LATCH EX,
i nt ti meout =

sthread_base_t:: WAl T_FOREVER,

int4 t ref bit =0

)

Fi nd() isthebasic look-up function. It searches the hash table for aframe containing the page identified
by p. The method returnsin error if the page is not found. If the pageisfound, it islatched in the given
mode. If the page cannot be read before the given timeout expires, the method returnsin error. The last
argument allows the caller to set the reference “bit” (which is not a bit) to fool the clock algorithm used to
clean the buffer pool.

wrc t gr ab(
bfcb t*& ret,
const bfpid_t& p,
bool & f ound,
bool & i S_new,
| at ch_node_t node = LATCH_EX,
i nt timeout =

sthread_base_t:: WA T_FOREVER) ;

The method gr ab() finds aframe into which the caller will read a page identified by page ID p. . Firgt, it
looks for the page in the table; if found, it latches the frame and returns. If the pageisnot in the table, a
frame is grabbed, latched, and marked asin-transit. It might be that the frame chosen contains another
page, and that other page needs to be replaced. The caller then forces out the old page before it reads in the
page it wants. Any function that callsgr ab() must subsequently call publ i sh() after theframeis
filled.

voi d publish_partial (bfcb_t* p);
voi d publ i sh(

bfcb t* P,

bool error_occured = fal se);

Publ i sh() andpubl i sh_partial () changethe state of the control regarding in-transit pages.
When gr ab() returnsan in-use frame and a page replacement occurs, the caller uses

publ i sh_parti al () after flushing out the old page. Publ i sh_parti al () wakesup any threads
that were waiting on the page that was written out.. After the desired page isread into the frame,

publ i sh() iscalled to make the new page generally available to other threads, and to wake up any
threads waiting for the new page.

wrc_ t pi n(

bfcb t* p,

| at ch_node_t node = LATCH EX);
voi d unpi n(

bfcb t*& P,

07/12/99 Storage Manager Architecture (DRAFT) Page 23 of 42

0

i nt ref bit ,
true);

bool i n_htab

Pi n() and unpi n() adjustthe pincount of aframe, given the control block. Using these methods
bypasses the hash-table lookup.

Files: bf.h, bf.cpp, bf_core.h, bf_core.cpp

7.5 Storage structures

The storage manager supports three storage structures. Storage structures may have their own navigable
structures in addition to the underlying structure of the store(s) that compose them. In the case of small-
object files, no such structure exists; in the case of B-trees, of course, it does.

7.5.1 The directory (dir_m)

Every storage structure that is accessible to a server through the API appearsin astore directory. The
directory is a B-tree index that contains information about the storage structures.

The index key isthe identifier of the storage structure (st i d_t , which servesasafileid, aB-treeid, an
rtreeid, and astoreid). The data stored for each store (sdesc_t) includes some persistent information and
some transient information (e.g., an approximate last page of the store). The persistent data are stored in
ansi nfo_s, andinclude

e kind of structure: B-tree, file, rtree

e if aB-tree isit unique?, what concurrency control doesit use (kvl, IM, none)?

» what stores compose this storage structure?

« what pageistheroot of this storage structure?

e if thisisanindex, what isthe type of the key of thisindex?

Store descriptors are cached so that the disk need not be used every time a storage structureislooked up in
the directory.

Files: dir.h, dir.cpp, sdesc.h

7.5.2 File manager (file_m)

Files are groups of variable-sized records (or "objects"). A record isthe smallest persistent datum that has
identity. Records may also have headers. Asrecordsvary in size, so their storage representation varies.
The storage manager changes the storage representations as needed.

A file comprises one or two stores. One store is aways allocated for slotted (small-record) pages. If any
large records exist in the file, the file will also contain a store for large-record pages.

The scan order of afile isthe physical order of the recordsin the file. See the note in the section below,
Scanning files.

Every record, large or small, has metadata called atag, represented by cl ass rectag_t, which
contains the following (and more).

struct rectag t {
uint2 t hdr _len;// length of user header
uint2_t flags;// enumrecflags_t

07/12/99 Storage Manager Architecture (DRAFT) Page 24 of 42

sneize t body Ilen; /1l true length of the record
serial _t serial_no;// logical serial nunber in file

Thehdr _| en tellsthe length of the “user header”, which may be of size 0. Thef | ags isabit mask that
indicates, among other things, the representation used to store the record. The bit mask will include one of
the following values:
« t_small therecordissmall enough to fit on asingle file page.
e t_large_0 therecordistoo largeto fit on asinglefile page; it has the representation described
below
e t_large_1 therecord wasconvertedfroma t | arge_ 0 to arepresentation that usesa 1-
level tree
e t_large_2 thisrepresentation usesa2-level tree

Every record’ s tag can be manipulated (internally by the storage manager -- not by a server) through
class record_t {
publi c:

/1 You can look directly at the tag

rectag_t tag;

bool is_large() const;
bool is_small () const;

/'l get size of user header or body
sneize_t hdr_size() const;

snsi ze_t body_size() const;

/1l get pointer to user header or

/1 sonme part of body -- whatever is
/1 pinned

const char* hdr() const;

const char* body() const;

/1l offset of the part of the body that’s pinned
i nt body_offset() const

/1 page id of page containing the given offset
/1 into the record s body
| pid_t pid_containing(snsize_t offset,
sneize t& start_byte,
const file_p& page) const;
b
There are two APIsfor serversto manipulae individual objects:
¢ methods of the storage manager class(ss_m : create_rec (),ss_m :append_rec(), etc),
and
e theclasspin_i. (Pi n_i isaniterator over the pages of an object, henceitsname.) Thepi n_i
class permits small records or single pages of large records to be pinned in the buffer pool under the
control of the server. It contains methods for reading and updating records in whole or in part.

Regardless of the API used, updates to records are accomplished by copying out part or all of the record
from the buffer pool to the server’s address space, performing the update there, and handing to the storage
manager the new data (part or all of the updated record). This simplifieslogging of updatesin the storage
manager.

When arecord is pinned (fixed in the buffer pool), the page containing the header and tag may be in the
buffer pool, and at the same time, at most one page of the record’ s body is placed in the buffer pool. A
server manipulates the pinned state of arecord through the

class pin_i {

07/12/99

Storage Manager Architecture (DRAFT)

publi c:
/'l flags that describe the pin state of the record

enum flags_t {

pin_enpty = 0x0,
pi n_rec_pinned = 0x01
pi n_hdr_only = 0x02,

pi n_separate_data = 0x04,
pi n_| g_dat a_pi nned

pi nned
s
pin_i();
~pin_i();

/1l pinthe record identified by “rid’. W're
/1 interested in the portion of the record that

/] starts at “start”
/'l lock the record in the given node
wrc t pi n(

const rid_t rid,

sneize t start,

| ock_node_t | node = SH)

/1l release the record fromthe buffer poo
voi d unpin();

Il repin efficiently repins a record after

/Il its size has changed, or after it has been

/1 unpi nned.
wrc_ t repin(lock node t | nbde = SH)

/'l conditionally pin: only if the page is
/'l cached in the buffer pool

wrc t pi n_cond(
const rid_ t& rid,
snei ze_t start,
bool & pi nned,
bool cond = true,
| ock_node_t | rode = SH)

/1 pin the next range of bytes in the record,
/1 freeing the page of the body that’s now pinned
/] Paraneter eof is set to true if there are

/1 no nore bytes to pin.

/1 When eof is reached, the previously
/1 pinned range renmai ns pinned.

w_rc_t next _byt es(bool & eof);

/1 is sonething currently pinned
bool pi nned() const;

/'l is the entire record pinned
bool pi nned_al | () const

/1 return true if pinned *and*
/1l pin_i is up-to-date with the LSN on
/1l the page. in other words, verify that

Page 25 of 42

0x08 // large data page is

07/12/99 Storage Manager Architecture (DRAFT) Page 26 of 42

/1 the page has not been changed by anot her
/1 pin_t after this pin_i pinned the page
bool up_to_date() const;

/1l return offset of first byte pinned

snei ze_t start _byte() const;
/'l how many bytes fromstart_byte() are pinned
smsi ze_t I engt h();

/'l size of user header

snei ze_t hdr _si ze() const;

/1 size of entire body

smsi ze_t body_si ze() const;
bool is_large() const;

bool is_snmall() const;

/'l record id

const rid_t& rid() const;

/1 pointer to user header

const char* hdr() const;

/'l pointer to first pinned byte of body
const char* body();

/1 These record update functions

/1 duplicate those in class ss_m

/1 and are nore efficient.

/1l They can be called on any pinned record

/'l regardl ess of where and how nuch is pinned.

wrc t update rec(snsize_t start,
const vec t& data, int* old value = 0);
wrc t update_rec_hdr(smnsi ze_t start,
const vec_t& hdr);
wrc t append_rec(const vec_t& data);
wrc t truncate_rec(snsize_ t anount);
| pid_t page_cont ai ni ng(smnsi ze_t of fset,

smsi ze_t & start_byte) const;

b

When a server manipulates arecord through the ss_m methods, the storage manager pins the records,
performs the operation and unpins the record. When a server manipulates a record through the pi n_i
methods, the record remains pinned between storage manager operations. The server must unpin or repin
records at the proper timesin order to avoid latch-latch deadlocks or latch-lock deadlocks. Pinning a
record amounts to

1. locking the record (and page, per hierarchical locking)

2. fixing the page in the buffer pool (acquiring alatch on the page for the thread that performs the pin)
3. computing the page offset of the record’ stag

If aserver pinstwo different records that reside on the same page, an update to one of the records might
invalidate the pi n_t for the other record because the update might cause the page to be rearranged and the
offsetsto change. For thisreason, a server might haveto call ther epi n() method. Furthermore, if the
server has two or more threads operating on behalf of the same transaction, the lock acquisition will
provide no deadlock protection among the threads, and the storage manager does not perform deadl ock
detection for latches. Finally, if two or more threads pin more than one record each, on behalf of two
different transactions, and if a strict ordering is not imposed on the pins, the two threads may find
themselvesin latch-lock deadlock.

07/12/99 Storage Manager Architecture (DRAFT) Page 27 of 42

7.5.2.1 Small records (t _smal |)

Small records are those small enough to fit (one or more) on aslotted page. When a small record grows too
largeto fit on a slotted page, the storage manager moves the object and changes its storage representation.

page header

record

dot table

7.5.2.2 Large records

Every large record has a small amount of metadata on a slotted page. It may also have a header on the
slotted page.

7.5.2.2.1 Large records:t | arge_ 0

The body portion of the record in the dotted pageisalist of chunks (I g_t ag_chunks_s). A chunk
represents a set of contiguous pages, up to 65536 pages long (since 2 bytes are used for the length of a
chunk). Thus, for a storage manager compiled with 8K pages, at _| ar ge_0 record is between 8096
(largest small object size) and about 21 gigabytesin size (if each chunk is 65K pageslong). If thereisbad
clustering in the object, at _| ar ge_0 might have to be convertedtoat | arge_1 whenitisonly 5
pagesin size.

record body

N

7.5.2.2.2 Largerecords:t large 1, t _large 2

The body portion of the record in the dotted page contains no information about leaf pages; rather, it points
to theroot of a 1-level index for therecord (itisal g_tag_i ndi rect _s). Largerecord index pages use
one slot, which is simply an array of page Ids. Thus, for 8K-sized pages, 2030 page |dsfit, meaning that a
t | arge_1 record can be up to about 16.4 megabytes. 2-level indexes(t _| ar ge_2) are not yet
implemented.

At _| arge_1 record lookslikethis:

07/12/99 Storage Manager Architecture (DRAFT) Page 28 of 42

record body

The storage manager automatically performs record-level, two-phase locking by default. The server can
choose coarser granularity for the locking, and (as described later) it aso has limited ability to free locks.

7.5.2.3 Scanning files

The API for scanning filesisthe iterator classscan_fi | e i, which provides optional 1-page prefetch.
The prefetch mechanism was added to see if the access patterns of the Paradise server offered sufficient
opportunity to exploit prefetch that it might be worth re-designing the interface between the buffer manager
and the 1/O layer to allow a“real” implementation of prefetching. The existing prefetch mechanism
consists of athread that communi cates with the scan iterator, and accepts prefetch requests from the
iterator. The thread then fixes the page and unfixesit, in the hope that by the time the scan iterator fixesthe
page, the page will then be in the buffer pool. Thisis ahaphazard way to accomplish prefetch, and
involves alot of overhead: fixing pagesis not cheap.

The storage manager provides a class for rapidly appending objectsto afile (append file_ i -a
misnomer because it is not an iterator, but it derivesfromscan_fi | e_i). Thisamountsto keeping the
last pagein afile fixed in the buffer pool (through the append _fil e i) toavoid excessfixing of that

page.

The scan order of afileisthe physical order of recordsin thefile. If theappend_file_i APlisusedto
append records to afile, the scan order will be the append order. If any other methods are used to create
objectsin thefile, al bets are off.

7.5.2.4 Allocating space for records

Whentheappend_fil e_i APl isused to create records, the storage manager keeps the recordsin the
order in which they were appended; this can waste disk space, but it preserves the sort order of sorted files.
When any other method is used to create records, a different policy applies. The storage manager keeps a
small cache of recently-used pages for each store; if arequest cannot be satisfied by pagesin this cache, the
storage manager checks a histogram describing the store to determine whether it is worthwhile to perform a
linear search of the file for allocated-but-unused space.

Files: smh, pin.h, pin.cpp, snfile.cpp, file.h, file_s.h, file.cpp
I grec.h, lIgrec.cpp, scan.h, scan.cpp

7.5.3 B-tree manager (btree_m)
The B-tree indexes are B+-trees, but "B-tree" is commonly used in the sources and documentation.

When aB-tree is created, the server ("user" of the storage manager API) chooses
1. thekey typefor the index, from

07/12/99 Storage Manager Architecture (DRAFT) Page 29 of 42

e signed, unsigned 1-, 2-, 4-byte integers
« fixed-length strings
» variable-length strings
e |EEE float and double
» combinations of the above
2. optional prefix compression
3. which locking protocol to use with the index, among
e nolocking
e KVL
e IM
e A variant of KVL that provides higher concurrency by avoiding next-key locking, but does not
avoid phantoms, and so it does not permit range scans.

The values associated with the keys are opague to the storage manager, except when IM is used, in which
case the value istreated asarecord ID, but no integrity checks are done. It isthe responsibility of the
server to see that the value islegitimate in this case.

B-trees can be bulk-loaded from files of sorted key-value pairs.

The implementation of B-treesis straight from the Mohan ARIES/IM and ARIES/KVL papers.

Those two papers give a thorough explanation of the arcane algorithms, including logging considerations.
Anyone considering changing the B-tree code is strongly encouraged to read these papers carefully. Some
of the performance tricks described in these papers are not implemented here. For example, the ARIES/IM
paper describes performance of logical undo of insert operationsif and only if physical undo is not
possible. The storage manager always undoesinsertslogically.

Files: smh, snindex.cpp, btree.h, btree.cpp, btree_inpl.h,
btree_i npl.cpp, btree_p.h, btree_p.cpp, btcursor.h, btcursor.cpp,
btree_bl.cpp, lexify.h, lexify.cpp, sort.h, sort_s.h, sort.cpp

7.5.4 R-tree manager (rtree_m)

The spatial indexes in the storage manager are R*-trees®, avariant of R-trees that perform frequent
restructuring to yield higher performance than normal R-trees. The entireindex is locked.

Files: smh, smndex.cpp, rtree.h, rtree.cpp

7.6 Lock manager (lock_m)

The lock manager's API allows explicit acquisition of locks by other modules in the storage manager.
Freeing locks is automatic at transaction commit and rollback. Thereislimited support for freeing locksin
the middle of atransaction. Thisisaccomplished by creatingaquark (sm quark _t). A quarkisa
marker in the list of locks held by atransaction. When the quark is destroyed, all locks acquired since the
creation of the quark are freed. Quarks cannot be used while more than one thread is attached to the
transaction, although the storage manager does not strictly enforce this (due to the cost).

The lock manager enforces two lock hierarchies:
e Volume, store, page, record
e Volume, store, key-value

A lock identifier (I ocki d_t) contains al the necessary information for the lock manager to do this. The
lock manager does not verify that lock identifiers refer to any existing object. Other than the way the lock

07/12/99 Storage Manager Architecture (DRAFT) Page 30 of 42

identifiers are inspected for the purpose of enforcing the hierarchy, lock identifiers are considered opaque
data by the lock manager.

The lock manager escalates up the hierarchy by default. The escalation thresholds are based on run-time
options. They can be controlled (set, disabled) on a per-object level. For example, escalation to the store
level can be disabled when increased concurrency is desired. Escalation can also be controlled on a per-
transaction or per-server basis.

The lock manager contains hooks for distributed deadlock detection (described |ater).

The lock manager uses a hash table whose size is determined by a configuration option. The hash function
used by the lock manager is known not to distribute locks evenly among buckets. Thisis partly dueto the
nature of lock IDs. The lock manager code contains several hash functions that can tested, and the lock
manager can be instrumented with some expensive statistics to measure the effectiveness of the hash
function. To do so, you must

#defi ne EXPENSI VE LOCK STATS
(which can be done in the generic configuration file, shor e. def).

In anticipation of porting the storage manager to a preemptive threads environment, the lock manager can
be configured to use a mutex on each bucket rather than a mutex on the entire table.

Files: lock.h, lock.cpp, lock _core.h, |lock core.cpp, lock_s.h
lock s inline.h, lock x.h

7.7 Transaction manager

Transaction management is not encapsulated into a single manager; rather, it islargely implemented in the
classxct _t (atransaction) with certain functionality in other managers. For example transaction
management is closely related to lock management, and there are some classes that know alittle about both
(xct _lock_info_t,lock _cache_t).

By default, transactions have standard (degree 3) ACID properties. The storage manager assigns alocal
transaction I|D when a transaction is begun (the server cannot choose its transaction 1ds). Distributed
transactions are not fully implemented in the storage manager, however there are all the hooks necessary
for full distributed transactions to be implemented in aserver. The server isresponsible for bookkeeping
(associating a global transaction ID with a set of local transaction IDs -- one in each server process). The
storage manager API contains functions that allow the server to inform the storage manager of the
coordinator’s name (opaque to the storage manager) for logging purposes, for preparing alocal transaction,
and for recovering prepared transactions after a crash-restart. More will be said about distributed
transactions later. For the purpose of this section, a transaction refersto alocal transaction (which might
happen to be a"branch" of aglobal transaction).

The server may choose to chain transactions (commit one transaction, begin another, and transfer the locks
from the committed to the new transaction). Partial rollback is provided through savepoints.

7.7.1 Multi-threaded transactions

Several server threads (threads of control, as opposed to a branch of aglobal transaction) may participatein
atransaction under limited circumstances. Participating in a transaction occurs when any storage manager
activity occurs while the thread is "attached" to a transaction. (Attaching consistsin the existence of a
reference from athread instance to a transaction instance. Threads may be attached to no transaction.) For
example, the transaction cannot be committed or rolled back (fully or to a savepoint) while more than one
thread is attached to atransaction. Only one thread of the transaction can use the log at a given time, since
the transaction 1D written in log records does not contain any thread 1D.

07/12/99 Storage Manager Architecture (DRAFT) Page 31 of 42

7.7.2 Transactions and logging

Each transaction caches the last log record written until that log record is forced to the log by the logging
protocol. Caching the last record allows compensations to be piggy-backed on the log record, reducing
logging overhead. Log records for redoable-undoable operations contain both the redo- and undo- data,
hence an operation never causes two different log records to be written for redo and for undo. This, too,
controls logging overhead.

The protocol for applying an operation to an object is as follows:
Lock the object.

Fix the page(s) affected in exclusive mode.

Apply the operation.

Write the log record(s) for the operation.

Unfix the page(s).

agrwNE

The protocol for writing log recordsis as follows:

1. Grab the transaction’s buffer in which the last log record is to be cached by calling
xct _t::get_l ogbuf(logrec_t*& I)

2. Writethelog record in the buffer.

3. Releasethe buffer with

xct _t::give_|logbuf(logrec_t *lI, const page_p *page),

passing in the second argument the fixed page that was affected by the update being logged. This does
several things:
1. writesthe transaction ID, previous LSN for this transaction into the log record
2. flushesthe record to the log and remembers this record’s LSN
3. marksthe given page dirty.

Between the time the log buffer is grabbed and the time it is released, the buffer is held exclusively by the
one thread that grabbed it, and updates to the log buffer can be made freely.

The above protocol is enforced by the storage manager in helper functions that create log records; these
functions are generated by Perl scripts from the source file| ogdef . dat . (See Log manager, Log record
types below.)

Some logging records are compensated, meaning that the log records are skipped during rollback.
Compensations may be needed because some operation simply cannot be undone. The protocol for
compensating actionsis as follows:

Fix the needed pages.

Grab an anchor inthelog. Thisisan LSN for the last log record written for this transaction.
Update the pages and log the updates as usual.

Write a compensation log record and free the anchor.

AR

Grabbing an anchor prevents all other threads in a multi-threaded transaction from gaining access to the
transaction manager.

In some cases, the following protocol is used to avoid excessive logging by general update functions that, if
logging were turned on, would generate log records of their own.

1. Fix the pages needed in exclusive mode.

2. Turn off logging for the transaction.

3. Perform the updates by calling some general functions. If an error occurs, undo the updates
explicitly.

4. Turnon logging for the transaction.

5. Log the operation. If an error occurs, undo the updates with logging turned off..

07/12/99 Storage Manager Architecture (DRAFT) Page 32 of 42

6. Unfix the pages.

The mechanism for turning off logging for atransaction isto construct an instance of
xct _| og _switch_t. Whentheinstanceis destroyed, the original logging state isrestored. The switch
applies only to the transaction that is attached to the thread at the time the switch instance is constructed,
and it prevents other threads of the transaction from using the log (or doing much elsein the transaction
manager) while the switch exists.. An example from the B-tree code:
{/! open scope
xct _log switch_t toggl e(OFF);
rc = leaf.insert(key, el, slot);
if(rc) {
| eaf . di scard();
return rc.reset(); // force caller to check rc

}/ 1 close scope

7.7.3 Concurrency control

The storage manager locks data when they are read and updated. The locking isimplicit, but explicit
locking can be done with callstoss_m : | ock() . Arbitrary unlocking is not allowed. Two-phase
locking is used unless quarks are used by the server (see Lock manager, below). Each transaction keeps a
list of the locksit holds, so that the locks can be logged when the transaction is prepared and released at the
end of the transaction. Furthermore, to avoid expensive lock manager queries, each transaction keeps a
cache of the last 5 locks of each kind in the lock hierarchies. This close association between the transaction
manager and the lock manager is encapsulated in several classesin the file

I ock_x.h
which is well-commented.

Files: lock_x.h, smh, smcpp, xct.h, xct.cpp xct_inpl.h, xct_inpl.cpp.

7.8 Log manager (log_m)

The storage manager performs ARIES-style logging and recovery. This means the logging and recovery
system has these characteristics:
e useswrite-ahead logging (WAL)
e repeats history on restart before doing any rollback
« dl updates are logged, including those performed during rollback
* compensation records are used in the log to bound the amount of logging done and guarantee
progress in the case of repeated failures and restarts.

7.8.1 Log Sequence Numbers (LSNSs)

Write-ahead logging requires a close interaction between the log manager and the buffer manager: before a
page can be flushed from the buffer pool, the log might have to be flushed.
This also requires a close interaction between the transaction manager and the log manager.
All three managers understand a log sequence number (LSN) , implemented by

class lsn_t.
Log sequence numbers serve to identify and locate log records in the log, to timestamp pages, identify
timestamp the last update performed by a transaction, and the last log record written by a transaction.
Since every update islogged, every update can be identified by alog sequence number. Each page bears
the log sequence number of the last update that affected that page.
A page cannot be written to disk until the log record with that page’s LSN has been written to the log (and
ison stable storage).

A log sequence number is a 64-hit structure, witha32-bitl sn_t: : hi (Janda32-bit I sn_t::lo().

07/12/99 Storage Manager Architecture (DRAFT) Page 33 of 42

7.8.2 Log partitions

Thelog is partitioned to simplify archiving to tape (future work).The log comprises 8 partitions, where
each partition’s sizeis limited to approximately 1/8 the maximum log size given in the run-time
configuration optionsm | ogsi ze.

In the Unix-files case, the configuration option sm_| og names a directory (which must exist before the
storage manager is started) in which the storage manager may create and destroy files. In the raw case, the
option sm_| og names araw disk partition, which the storage manager further splitsinto 8 log partitions
(these “partitions” are not to be confused with disk partitions). The storage manger may have at most 8
active partitions at any onetime. An active partition is one that is needed because it contains log records
for running transactions. Such partitions could (if it were supported) be streamed to tape and their disk
space reclaimed. Spaceis reclaimed when the oldest transaction ends and the new oldest transaction’ s first
log record isin anewer partition (call this Pnew) than that in which the old oldest transaction’s first log
record resided. When this happens, all partitions created before Pnew are superfluous and their spaceis
reclaimed. Until tape archiving isimplemented, the storage manager issues an error (e OUTOFL OGSPACE)
if it consumes sufficient log space to be unable to abort running transactions and perform al resulting
necessary logging within the 8 partitions available. Determining the point at which there is insufficient
space to abort all running transactionsis a heuristic matter and it is not reliable. Ultimately, archiving to
tapeisnecessary. The storage manager does not perform write-aside or any other work in support of long-
running transactions.

In the Unix-file case, a partition is afile called
| og. N
where Nisthe Nth partition created.

The high 32 bits of an LSN identifies the partition in which the log record with that LSN resides.
The low 32 bitsis a byte-offset in that partition.

7.8.3 Checkpoints

The class
chkpt _m
sleeps until kicked by the log manager, and when it is kicked, takes a checkpoint, then sleeps again. Taking
a checkpoint amounts to these steps:
1. Writeachkpt _begi n log record.
2. Writeaseriesof chkpt _dev_t ab log records to log the device table (list of volumes and
devices mounted).
3. Write one or more chkpt _bf _t ab log recordsto record the buffer pool’s dirty-page
information. For each dirty page in the buffer pool, the page id and its recovery LSN
(rec_Il sn)islogged. A page's recovery LSN is metadata stored in the buffer manager’s
control block, but is not written on the page. It representsan LSN prior to or equal to the
log'scurrent LSN at the time the page was first marked dirty. Hence, it isless than or equal
to the LSN of the log record for the first update to that page after the page was read into the
buffer pool (and remained there until this checkpoint). The minimum of all the recovery
LSNs written in this checkpoint will be a starting point for crash-recovery, if thisisthe last
checkpoint completed before a crash.
4. Writeone or more chkpt _xct _t ab log records to record the states of the transactions.
5. Log the prepared transactions, using the same log records used for a normal transaction-
prepare operation.
6. Writeachkpt _end record.
7. Tell thelog manager where this checkpoint is: the LSN of the chkpt _begi n record
becomes the new master LSN for thelog. The master LSN iswritten in a special placein the
log so that it can always be discovered when the log manager is constructed (on restart).

07/12/99 Storage Manager Architecture (DRAFT) Page 34 of 42

Certain things cannot occur during a checkpoint, but otherwise, the checkpoint records can be interspersed
with other log records. What cannot occur are;

» Certain logging during a transaction-prepare operation.

» Certain logging during a transaction-commit operation.

e Mounting avolume.

» Dismounting a volume.

7.8.4 Recovery

When the storage manager object is constructed, the logs are inspected, the start of the last completed
checkpoint islocated, and its LSN is remembered asthe mast er _LSN. Recovery is performed in these
phases:

1. ANALYSIS: Theanalysispassbegins analyzing thelog at the mast er _LSN. It readsthe log records
of the last completed checkpoint and reconstructs the transaction table, an in-memory dirty page table,
and the device table, mounting devices and volumes as needed. From the dirty page table, it computes
the LSN where recovery must begin, redo_| sn, whichisthelowest of all the recovery LSNsin
the dirty page table.

2. REDO: The redo pass scansthe log, starting at r edo_| sn, and for each log record it encounters,
decides whether or not that log record’s action must be redone. The general rule for redoing alog
record's operation is:

If the log record is not redoable, the log record isignored. A redoable record might contain apage ID.
If it does not, the redo method for the log record is called. If the record does contain a page ID, the
page isinspected, and if the page’s LSN is older than the LSN of the log record, the record’s undo
method is called.

Formatting of pages presents a specia case. Page formats can be handled in one of two ways:

1. Trust the LSN on the page to be correct. Thisworksonly if every page on the volumeis
initialized when the volume is formatted. For large volumes, this can take along time, but it
means that during recovery, thepage_f or mat log records can be skipped if the LSN on the
page is older than the LSN of the log record. Thisisthe default.

2. Don'tinitialize each page when formatting avolume. The LSN on the page cannot be trusted in
this case, and every page_f or mat log record is redone during recovery; this meansthat every
subsequent log record for that page must be redone. The storage manager can be configured to
work thisway by #def i neing DONT_TRUST _PAGE_LSNin the configuration file
shore. def.

3. UNDO: After dl log records have been inspected and applied if necessary, the state of the database
matches that at the time of the crash. Now the storage manager rolls back the transactions that remain
active. Careistaken to undo the log recordsin reverse chronological order, rather than allowing
several transactions to roll back at their own paces. Thisis necessary because some operations use
page-fixing to for concurrency-control (pages are protected only with latches if thereisno pagelock in
the lock hierarchy -- this occurs when logical logging and high-concurrency locking are used, in the B-
trees, for example. A crash in the middle of a compensated action such as a page split must result in
the split being undone before any other operations on the tree are undone.). After the storage manager
has recovered, there can be transactions left in prepared state. The server is now free to resolve these
transactions by communicating with its coordinator. (See Distributed Transactions, Two-phase
commit, Internally-coordinated transactions, below.)

Locks are not acquired during recovery.

| Files: restart.cpp

07/12/99 Storage Manager Architecture (DRAFT) Page 35 of 42

7.8.5 Log Buffering and I/O

The log manager can be configured at compile-time to perform local 1/0 or use remote processes for non-
blocking 1/0. Log records are buffered until forced to stable storage to reduce 1/0 costs. The log manager
keeps a buffer of asize that is determined by a run-time configuration option. The buffer is flushed to
stable storage when necessary. The last log in the buffer is always a skip log record, which indicates the
end of the log partition.

Files: log_buf.h, |og_buf.cpp

7.8.6 Controlling logging overhead

Logging can be turned on and off on the basis of
* store property,
e astorage structure’s protocol, or
e asystem-wide configuration option, although thisis of limited use.

A store’s property greatly affects the amount of logging that is required for updates to the store or to the
pagesin astore. Temporary files, for example, do not need to have data updates logged; only metadata
updates are logged.

7.8.7 Turning off logging

Each storage structure hasits own protocol for controlling logging. The B-tree code, for example, turns off
logging for short periods to avoid physical logging of updates, then back on while it explicitly logs updates
logically. The section Transactions and logging describes the mechanism.

Updates to the user datain temporary files never get logged.

There isarun-time configuration option sm | oggi ng, which was added long ago in the hope of making
it possible to measure logging overhead by forcing all logging to be turned off for an experiment. This
must be used with care, if at all, because it might break some assumptions in the code.

7.8.8 Measuring logging overhead

The best way to measure logging overhead isto ook at the statistics kept by the log manager. The
following statistics are apropos:

« log_sync_nrec_max: the maximum number of log records collected in the log buffer before the log
was flushed to stable storage.

« log_sync_nbytes max: the maximum number of bytes collected in the log buffer before the log was
forced to stable storage. These two help measure the effectiveness of buffering the log.

e log_sync_cnt: the number of times the log was forced to stable storage.

e log_chkpt_cnt: the number of checkpoints taken

« log_switches: the number of times the log was turned off for a transaction

e await_1thread log: the number of times athread of a multi-threaded transaction had to wait for access
to the transaction manager.

» acquire_lthread log: the number of times the mutex protecting the transaction manager class was
acquired.

e get_logbuf: the number of callstoxct _t:: get | ogbuf ()

e anchors: number of log anchors grabbed

e log_records generated: number of log records written

07/12/99 Storage Manager Architecture (DRAFT) Page 36 of 42

* log_bytes generated: number of bytes written to the log
e await_log_monitor: times athread had to wait for access to the log manager class for certain operations
e await_log_monitor_var: times athread had to wait for access to the log manager class variables

The log manager is a performance bottleneck for loads that involve many updates.

7.8.9 Log record types

There are three styles of logging described in the literature: physical logging (the record contains before-
and after-images of the data), logical logging (the record describes the operation rather than its effect, e.g.,
“add 3 to the value in the 4™ slot), and physiological logging (a combination of the two, which has the
space-savings and allows high concurrency locking protocols offered by logical logging wherever possible,
and it has the simplicity of physical logging where logical logging is not used).

The storage manager uses physiological logging, but the language used in the code and comments can be
misleading, in that much of what is called “physical” logging isin fact logical by the commonly-accepted
definitions above. Very few operations are, in fact, physically logged (page_| i nk,

page_set _byte, page_splice, set_store_flags, set_deleting). Inthestorage
manager argot, alog record is“physical” if it is page-oriented (it applies to a page whose page ID isin the
record), and “logical” it is operation-oriented (also called functional logging). For example, a B-tree insert
resultsin alog record that is physically redone (insert this value on this page) and logically undone
(remove this value from the B-tree; start by traversing the B-tree from the root).

Much of the log-record-specific code is generated by a Perl script. This makesit easy to change the
logging scheme. Theinput fileisl ogdef . dat , which contains a set of lines of the form

name mask args
for which the Perl script generates the following:

A class definition (inl ogdef gen. cpp):
class nanme_l og: public logrec_t {

publ i c:
nane_log (args);

voi d redo (page_p *); // optional
void undo (page_p *); // optional

1
A freefunction (in| ogst ub_gen. cpp}:
rct log nane (args) { ... }

A case of aswitch statement (inr edo_gen. cpp):
case t_nane:
(name_log *) this) -> redo(page);

A case of aswitch statement (inundo_gen. cpp):
case t_nane:
((nanme_l og *) this) -> undo(page);

A value for an enumeration (inl ogt ype_gen. h):
t_name = ...,

The bodies of the methods of classname_I| og are hand-written and residein| ogr ec. cpp. The switch
cases are included in general redo and undo functionin| ogr ec. cpp. Adding anew log record type
consists of adding alineto | ogdef . dat , adding the method definitionsto | ogr ec. cpp, and adding the
appropriate callsto the free function | og_nane(ar gs) inthe storage manager.

07/12/99 Storage Manager Architecture (DRAFT) Page 37 of 42

The base class for every log record is| ogr ec_t , whichisworth studying. Itisinl ogrec. h. Everylog
record has one or more of the following characteristics (Seethe commentsin| ogdef . dat, where
some of these characteristics are set with the mask.)

« X:itisgenerated by atransaction (some log records are not, e.g., those used for checkpointing). If
it isgenerated by atransaction, the log record will contain atransaction ID, and the | og_nane()
function will be generated by the Perl script.

* R:itisredoable -- the general redo function will contain a switch case for thislog record.

e U:itisundoable -- the general undo function will contain a switch case for thislog record. An
undoable log record is either page-oriented or logical (operation-oriented).

e A:itisalogrecord for space allocation, so its generation cannot be turned off by log switches or
by store flags on a page.

e L:itisalogical log record -- it does not need a page pinned for undo.

e C:Itisacompensation record. Thereisalog record whose sole purpose isto compensate around
other log records, but compensations can be piggy-backed on other log records.

Certain methods of | ogr ec_t refer to these characteristics:

e bool logrec_t::is_redo() const returnstrueif thelogrecordisredoable

e bool logrec_t::is_undo() const returnstrueif thelog record isundoable

e bool logrec_t::is_cpsn() const returnstruefor compensation records. Theselog
records are not undoable. Instead of applying undo and then reading the previous log record for
the transaction, the undo code skips this log record and simply goes on to look at the previous log
record (Il ogrec_t::prev().

e bool logrec_ t::is_page_update() const returnstrueif thelogrecordisredoable, is
not a compensation log record, and has a legitimate page |D to which to apply changes.

e bool logrec_t::is_logical () const returnstrueforlogical log records.

Files: log.h, log.cpp, |og_base.cpp, |og_buf.h, |og_buf.cpp, unix_|og.h,
uni x_l og.cpp, srv_log.h, srv_log.cpp, raw_|og.h, raw_| og.cpp,
| ogdef.dat, logrec.h, logrec.cpp, |ogstub.cpp

7.9 External sort

The storage manager contains a set of sorting routines for use by the server. They areincluded in the
storage manager for performance. File sort could be written at the server level, but it would require many
record pinsthroughthe pi n_i interface, whichiscostly. There are two sort implementations with two
APIsfor sorting files. One (the "old") sort implementation sorts on a fixed set of keys. The other (the
"new") implementation is more general, and does much of its work through callbacks to the server-
provided functions. This makes the storage manager prone to crashes if the callback functions contain any
bugs. If the generality of the latter implementation is not needed, use the former.

The new sort implementation produces output directly usable for bulk-loading R-tree and B-tree indexes.
It performs a polyphase mege sort with callbacks for key comparisons. If the type of the key is one of the
fundamental types supported by the old sort implementation, the internal key comparison functions from
the old sort implementation are used. For performance comparisons, the old sort can be made to invoke the
new sort implementation. A Boolean argument to the old sort API controls this option.:

There are some significant differences that are worth mentioning here. The B-tree implementation sorts on
key-value pairs, so in the event that a B-tree holds <key,OI D> pairs, the records with duplicate keys must
be sorted on the OIDs. The B-tree bulk-load method contains a hack to sort duplicates on their OIDs,

so that bulk-loading can work with the old sort code. The new sort can be made to guarantee a stable sort,
but in the event that the sort is producing records for bulk-loading a B-tree, this can be counter-productive.
The new sort code handles duplicates as follows:

07/12/99 Storage Manager Architecture (DRAFT) Page 38 of 42

if (duplicates are being elimnated) {
remove the one with the larger QD

} else if (this is a stable sort) {
sort by input order

} else if (this is output for an index) {

sort by OD
} else {

don’t guarantee any thing about their relative order
}

The old sort eliminates duplicates as follows:
if (duplicates are being elimnated) {
if (entire object is a duplicate) {
renove one of the objects

7.10 Statistics

The storage manager keeps server-wide statistics. 1t also keeps some per-transaction- and per-thread
statistics. Per-thread statistics can be aggregated into the per-transaction statistics, and per-transaction
statistics can be reaped by the server at the end of atransaction. Some of the data structures and code for
managing counter-type statistics is generated from Perl scriptsand . dat files. To add a counter to the
storage manager, simply add a line to the (mostly self-explanatory) sm st at s_i nf 0. dat and add
code to update the counter in the appropriate places in the storage manager. The macros INC_TSTAT and
INC_STAT update statistics. Grep for the definitions of these macrosinsni *. { h, cpp} to seehow
they are used.

7.11 Distributed Transactions

The support for distributed transactions is described separately from the transaction manager becauseit is
separable from the rest of the storage manager, for single-server systems (single-process servers).

The server library contains a set of classes that support two-phase commit and centralized global deadlock
detection. These classes use the communications package for inter-process communication. Because the
communications package is not included with the storage manager, the details for these two modules are
omitted.

7.12 Two-phase commit

The storage manager contains hooks for two different flavors of distributed transactions.

7.12.1 Internally-coordinated transactions

When two or more SHORE storage manager-based server processes cooperate to implement distributed
transactions, the coordinator in the storage manager library can be used. All over-the-wire communication
is performed with the communications system described above. The coordinator implements the
presumed-abort commit protocol. The coordinator’slog is a B+-tree.

Files: coord.cpp, coord.h, coord_|og.cpp, coord_log.h, coord_thread. cpp,
subord. cpp, participant.cpp, participant2.cpp

07/12/99 Storage Manager Architecture (DRAFT) Page 39 of 42

7.12.2 Externally-coordinated transactions

When a (one or more) server(s) cooperates with one or more external entities to implement distributed
transactions, the server must use an external coordinator, and all interaction with the storage manager is
through the storage manager’s APl (no over-the-wire interaction with external coordinators). The storage
manager library contains a coordinator that uses the communications package (not included). The
coordinator is aclass that is meant to be instantiated by a server after (local) recovery isfinished. If
recovery yields any prepared transactions that the server considers to be in-doubt, the server is expected to
initiate global recovery before accepting any more work from clients. The tester shell (ssh) contains code
that handles recovery for testing purposes; it can be examined to see how recovery is done.

7.13 Centralized global deadlock detection

The storage manager library contains a module that performs deadlock detection on global and local
transaction. This module interacts directly with the lock manager.

The lock manager, after waiting a (configurable) period of time for alock, invokes the global deadlock
detection class (which may be replaced, for example, with timeout). The deadlock detector provided with
the library collects the waits-for edges, filtering out unnecessary local-only edges to reduce traffic, and
detects cycles. The server isinvoked through a callback to choose avictim if acycleis detected. The
policy regarding choice of avictim is thereby left with the server.

Inter-server communication uses the communication module described above.

The implementation of global deadlock detection separates policy from mechanism.
The policy of selecting avictim in the event of a deadlock isimplemented by the server in a callback
function. Certain events can be monitored by the server through callbacks:

1. aglobal deadlock is detected

2. aloca deadlock is detected

3. aglobal victim was selected

4. the storage manager is about to kill the victim selected

The cooperating servers use global deadlock detection through afew methods in the storage manager and
by instantiating several classes. Each server’slock manager, upon finding that a transaction (thread) must
block awaiting alock, performslocal deadlock detection, then, if necessary, global deadlock detection
through ahook toacl ass G obal Deadl ockCd i ent . Inthiscontext, all cooperating servers are
clients of a deadlock detection service. The only such service implemented in the storage manager isa
centralized service (cl ass Central i zedd obal Deadl ockC i ent: public

G obal Deadl ockd i ent, dongwithcl ass Central i zedd obal Deadl ockSer ver),
although one could extend the storage manager, implementing a distributed service by writing acl ass

Di st ri but edd obal Deadl ockd i ent. Any one of the cooperating processes must be running an
instance of the Cent r al i zedd obal Deadl ockSer ver. Thisclasshasathread that listens for
reguests on awell-known Endpoi nt . It isawell-known endpoint in the sense that the cooperating
servers, when they start up, create instancesof Cent r al i zedd obal Deadl ockd i ent, giving these
classes the well-known endpoint. When these instances are initialized, they contact the deadlock server
and, with a handshake, identify themselves as deadlock clients, in return getting identifiers assigned by the
deadlock server.

The deadlock client and deadlock server classes use helper classes that implement the protocol among
them. These helper classes allow the mechanism of communication to be separated from the deadlock
detection algorithm (centralized or distributed) to some extent. The helper classes are

Deadl ockSer ver Conmruni cat or and Deadl ockd i ent Communi cat or . These two classes
implement the following protocol elements:

« megRequest d i ent | d: aclient sends this message to the server, which response with a

07/12/99 Storage Manager Architecture (DRAFT) Page 40 of 42

« megAssi gnC i ent | d: the server assigns an identifier (abit in abit mask) to each active client, and
responds with the identifier.

« msgVictim zer Endpoi nt : sent by one client or server to a server to indicate a remote entity that
will receivensgSel ect Vi ct i mreguests.

« msgRequest Deadl ockCheck: aclient sendsthisto aserver when the client’s lock manager
causes a transaction thread to block.

« msgRequest Wi t For s: sent by a server to a client whose waits-for graph the server wants

* nmegWai t For Li st : the client’ s response to the above request

« megSel ect Vi cti m sent by aserver to whatever cooperating process is responsible for selecting a
victim once a deadlock is detected. This message contains alist of global transaction I1Ds representing
the transactions deadl ocked.

« megVi cti nBel ect ed: response to the above request

« megKill Gid:onceavictimis selected, the server sends a message to the client that is running the
victim transaction thread

« msegQui t : sent from any cooperating process to another to cause the entire set of classes to shut down.

* nsgd i ent Endpoi nt Di ed, msgVi cti mi zer Endpoi nt Di ed,
nmsgSer ver Endpoi nt Di ed: send by the communications package when any of the endpoints
detects a network or server failure.

The centralized server does not usethemsgVi ct i m zer Endpoi nt , nsgSel ect Vi cti mand

nsgVi cti nBel ect ed messages. Instead, it asksits own server to select victims through the callback
function mentioned above. If the centralized server is not given a callback function in its constructor, a
default policy is used. The default policy isto choose the first transaction in the list of transactions involved
in a deadl ock.

The centralized server awaits nsgRequest Deadl ockCheck requests, and responds by broadcasting
requests for waits-for graphs. It usesits bit mask of clients to determine when it has received a response
(waits-for graph) for each of the active clients; at that time it checks for deadlocks, and, if so, selectsa
victimand issuesansgKi | | G i d to theright client.

The cycles of broadcasting and collecting waits-for graphs are serialized. Several requests are satisfied with
asinglecycle.

Files: sm gl obal _deadl ock. h, sm gl obal _deadl ock. cpp, deadl ock_events. h,
deadl ock_events. cpp

7.14 Callback Classes

In order to simplify testing and to allow serversto manage policy regarding distributed transactions, the
storage manager defines interfaces for two simple mapping classes, which the server is expected to
implement:

e Global transaction ids ---> local transaction ids

e Server name <---> communication endpoint

Global transaction IDs and server names are treated as opaque data by the storage manager.

8 Testing the storage manager - sm/ssh

Unit-testing of the storage manager is performed with a server that interprets Tcl scripts. The interpreter
contains functions for each element of the storage manager's API.

In addition, there are some shell scripts that run and restart the Tcl-based server, invoking hooksin the
server to cause controlled crashes.

07/12/99 Storage Manager Architecture (DRAFT) Page 41 of 42

Altogether, these tests include single- and multi- transaction tests, multi-threaded-transaction tests,
distributed transaction tests, and a few tests with pseudo-randomness.

07/12/99 Storage Manager Architecture (DRAFT) Page 42 of 42

9 References

1 J. Gray, A. Reuter, Transaction Processing: Concepts and Techniques, Morgan Kaufmann Publishers,
Inc., 1993

2 C. Mohan, D. Haderle, Bruce Lindsay, H. Pirahesh, P. Schwarz, ARIES; A Transaction Recovery Method
Supporting Fine-Granularity Locking and Partial Rollbacks Using Wriate-Ahead Logging, , ACM
Transactions on Database Systems, Vol 17, Number 1, March 1992

% C. Mohan, ARIES/KKVL: A Key-Value Locking Method for Concurrency Control of Multiaction
Transactions Operating on B-Tree Indexes, 1989, Research Report RJ 7008, Data Base Technology
Ingtitute, IBM Almaden Research Center, San Jose, CA 95120; also published in abbreviated formin
VLDB 1990, Brishane, Queensland, AU, pp 392-405

* C. Mohan, Frank Levine, ARIES/IM: An Efficient and High Concurrency Index Management Method
Using Write-Ahead Logging, 1989, Research Report RJ 6846, Data Base Technology I nstitute, IBM
Almaden Research Center, San Jose, CA 95120

® A. Silberschatz, P. Galvin, Operating Systems Concepts, Addison-Wesley, Addison-Wesley Longman,
Inc., 1998

® A. Silberschatz, J. Peterson, Operating Systems Concetps, Addison-Wesley Publishing Company, 1988

’ C. Mohan, D. Haderle, Algorithms for Flexible Space Management in Transaction Systems: Supporting
Fine-Granularity Locking, International Conference on Extending Database Technology (EDBT) 1994,
Cambridge, UK

8 N. Beckmann, H-P Kiegel, The R*-Tree: An Efficient and Robust Access Method for Points and
Rectangles, Proceedings of the 1990 SIGMOD International Conference on Management of Data, Atlantic
City, NJ, Mar 23-25, 1990, pp 322-331

