Shore Storage Manager Installation Manual

The Shore Project Group
Computer Sciences Department
UW-Madison
Madison, WI
Version 2.0
Copyright (©1994-9
Computer Sciences Department, University of Wisconsin—Madison.
All Rights Reserved.

August 25, 1999

!This research is sponsored by the Advanced Research Project Agency, ARPA order number 018
(formerly 8230), monitored by the U.S. Army Research Laboratory under contract DAAB07-92-C-
Q508. Further funding for this work was provided by DARPA through Rome Research Laboratory
Contract No. F30602-97-2-0247.

Contents

1

2

Introduction 2
Requirements 2
Warnings 3
How to Use These Installation Instructions 3
Installing the Documentation Release 4
Building The Storage Manager 5
6.1 Preparing your Environment o oL, 5
6.1.1 PATH environment variable 6
6.1.2 INCLUDE environment variable 6
6.1.3 LIB environment variable, 7
6.1.4 MAKE_MODE environment variable 7
6.2 Installing the Sources L. 7
6.3 Setting Build-time Configuration Options 8
6.4 Creating Generated Files o L L. 11
6.5 Building the Storage Manager 11
6.6 Selecting Subsets to Buildo oL 12
6.6.1 Omitting ssh e 12
6.6.2 Building only the Debug or Release Version 13
6.6.3 Regenerating Source Files oo, 13
6.6.4 Building Unit Tests 14
Installing The Storage Manager 15
Testing Your Installation 16
81 Runningssh e 16
8.2 Running file.scan e 17
Setting Run-time Configuration Options 18

1 Introduction

The Storage Manager Version 2.0 distribution consists of documentation and source files. This
document describes how to install the documentation and source files and how to build the
Storage Manager from the sources.

2 Requirements

To install the documentation and source files and build the software, you need:

a Sparcstation or Intel X86 processor

UNIX : Solaris (we use SunOS 5.6) or Linux (we use RedHat Linux 2.0.36 -
For various Linux distributors, see http://www.redhat.com/, http://www.debian.org/,
http://www.slackware.com/, and http://www.suse.com/); with at least 8 MB bytes of
shared memory

OR
Windows NT 4.0 with Cygwin installed (we use Cygwinnt-3.0 20.1 - see
http://www.cygnus.com/) and with Visual C++ 6.0 (and all its service packs) installed.

Perl 5 (we wuse 5.004.04) See http://www.activestate.com/ActivePerl/ and
http://www.perl.com/.

You will also need the following, which come with Cygwin on NT and with RedHat Linux:

— gzip file (de)compression facility to unpack the release.
— GNU make.

— The Tcl library (version 8.0). (We have heard reports of problems using the version
that comes wiht Cygwin. If you have trouble, install the Scriptics version.)

— The normal Unix utilities like csh, sh, mv, ar, 1d, tar, sed, etc.
The following C++ compiler:

— on Unix, gce 2.7.2.3 or eges (we use version 1.0.3)

— on NT (regardless of the build environment you use), you must have Visual C++
6.0 installed to compile and link the Storage Manager

A PDF reader or printer for reading the documentation.
Lots of free disk space. The disk space requirements are roughly:

— documents (files in both PDF and PS forms): 4.9 MB
— sources alone: 9 MB.

— sources, docs, and space to build from scratch:

* Release version (without debugging symbols and without trace code): (75 MB
on NT, 135 MB on X86, 165 MB on Sparcstation)

x Debug version (with debugging symbols and with trace code): (110 MB on NT,
100 MB on X86, 100 MB on Sparcstation)

The GNU software for Unix is available via ftp from ftp://prep.ai.mit.edu/pub/gnu or
ftp://gatekeeper.dec.com/pub/GNU.

The GNU software for NT comes with the Cygwin environment, which is available from
http://sourceware.cygnus.com/cygwin/

If you are unfamiliar with Tcl, it stands for “tool command language”. It was developed
by Dr. John Ousterhout at UC-Berkeley for providing interfaces for tools, although it can be
used for more than that. It is used in a test shell for the Storage Manager. You can build the
Storage Manager without the tester, in which case you do not need Tcl.

Tcl is available from http://www.scriptics.com/.

3 Warnings

We recommend that you not use virus-detection programs with the Storage Manager, as they
intercept I/O requests and may cause problems that are difficult to diagnose; they will certainly
deteriorate performance. For similar reasons, we recommend that logs and data volumes be
placed on local disks.

4 How to Use These Installation Instructions

You can build this software in the following environments (and possibly others, but we have
tested only these). The steps for building in these environments have the labels given below.
When following the instructions in this manual, do not succumb to the temptation to skip
over the prose between the labelled steps. The labels only serve to distinguish steps that differ
among environments.

UNIX | You can build on Linux or Solaris using the GNU utilities (with the egcs or gec
compiler).

You can build on Windows NT using the Visual Studio development environment,
with the Visual C++ compiler and linker. The project files in the release build both
Debug and Release versions by default. In both versions, the Storage Manager libraries
are static (not dynamic link libraries).

NT-CYG | You can build on Windows NT using the GNU utilities provided with the Cygwin
installation. This uses GNU Make, but compiles and links with the native C++ compiler
and linker (distributed with Visual C++).1

You are welcome to modify the configuration to use the GNU utilities, but we have not tested this and do
not provide instructions for doing so. You will have to decipher our configuration scheme, which is admittedly
arcane. You should start by looking at the file config/shore.def in the source release.

To install this software using these instructions, you must use a Unix-like shell. (You can
install the software on NT without such a shell, but these instructions do not help you with
that.) For NT, we suggest that you use the Bash shell window that comes with Cygwin (when
installed, its icon is labelled ” Cygwin B20”). In our experience, some implementations of tcsh
for NT do not work with our make files.

The installation instructions refer to these two shell variables:

set TARDIR=directory-that-holds-tar-files
set SMROOT=directory-in-which-to-install-sm

If you use the Bourne shell (/bin/sh) or one of the shells derived from it, such as ksh or
bash, omit the word “set”:

TARDIR=directory-that-holds-tar-files
SMROOT=directory-in-which-to-install-sm

The directory $TARDIR should already contain the tar files doc-2.0.tar.gz and
src-2.0.tar.gz (or prj-2.0.tar.gzif you plan to build on Windows NT using the Microsoft
Visual Studio environment).

Whatever shell you use, make a directory in which to build and install the Storage Manager.

| UNIX |[NT-VS|[NT-CYG |

mkdir -p $SMROOT

5 Installing the Documentation Release

You must have copied the tar files with FTP into the directory $TARDIR.

| UNIX||NT-VS|[NT-CYG

mkdir -p $SMROOT/doc
cd $SMROOT/doc
gunzip -c $TARDIR/doc-2.0.tar.gz | tar xvf -

This installs a doc directory containing the following subdirectories and files. Both PostScript
and PDF versions are included.

installation.{pdf,ps} This document.

README Contains copyright information.

smdoc. {pdf,ps} Hacker’s guide to the source code.

ssmapi.{pdf,ps} Brief description of the programmer’s interface (API) to the Storage Man-
ager.

manfc/ Manual pages (in Unix man style) for the code found in src/fc, foundation classes
(this has nothing to do with Microsoft foundation classes).

mancommon/ Manual pages (in Unix man style) for the code found in src/common, more code
likely to be common to client and server sides.

mansthread/ Manual pages (in Unix man style) for the code found in src/sthread, the Shore
threads package.

manssm/ Manual pages (in Unix man style) for the code found in src/sm, the Storage Manager
proper.

thread debug An ASCII text file describing how to switch threads when debugging with the
GNU debugger, gdb.

6 Building The Storage Manager

This section describes how to compile and link the Storage Manager. The first thing you must
do is to determine the paths to the utilities you you will use so that you can set up your
environment variables. If you do not know where things are installed on your machine, use the
Find tool to identify the paths needed by searching for the items given below.

cl.exe The native compiler.
bash.exe The Cygwin tools.
perl.exe Perl.

STDLIB.H The system include files.

MSVCRT.LIB The C libraries.

6.1 Preparing your Environment

After adjusting the three environment variables (Path, INCLUDE, LIB, and MAKE_MODE)
by following the instructions below, you must open a new shell to continue your work with the
new path.

6.1.1 PATH environment variable

To build the system, perl, make, tar, and the normal Unix utilities must be in your PATH
environment variable. If you are building on NT (whether NT-CYG or NT-VS), be sure the
Cygwin utilities (e.g., bash.exe) are also in your path.

ONIX]

for Bourne and its family of shells :
PATH=$PATH:<locations of Perl, GNU utils>

for C and its family of shells :
setenv PATH=$PATH:<locations of Perl, GNU utils>

NT-VS

Click on Start - Settings - Control Panel - System - Environment. In the list of User
Variables, click on Path and in the Value window, add the location of Perl and the Cygwin
tools. You must open a new shell to continue your work with the new path.

NT-CYG

If you are building with GNU make under Cygwin, your path environment variable must
contain the path to the native compiler (Visual C++) and linker executables, cl.exe,
link.exe, as well as the paths to Perl and the Cygwin tools.

Click on Start - Settings - Control Panel - System - Environment. In the list of User
Variables, click on Path and in the Value window, add the location of Perl, the Cygwin utilities
and the VC++ compiler.

6.1.2 INCLUDE environment variable

When you build on NT (regardless of the build environment) using the native VC++ compiler
the compiler needs to #include system include files. It locates these by the paths in the
INCLUDE environment variable.

INT-VS|[NT-CYG

Click on Start - Settings - Control Panel - System - Environment. In the list of User
Variables, click on INCLUDE and in the Value window, add the paths to the compiler’s include
files (e.g., STDLIB.H).

6.1.3 LIB environment variable

When you build on NT, some of the dynamic link libraries have to be located. The LIB
environment variable takes care of that.

|[NT-VS||NT-CYG |

Click on Start - Settings - Control Panel - System - Environment. In the list of User
Variables, click on LIB and in the Value window, add the paths to the C run-time libraries
(e.g., MSVCRT.LIB).

6.1.4 MAKE_MODE environment variable

When you build on NT with Cygwin Make, the MAKE_MODE environment variable should be set
to “UNIX”.

INT-VS||[NT-CYG
Click on Start - Settings - Control Panel - System - Environment. In the panel labelled
Variable, enter MAKE_ MODE, and in the panel labelled Value, enter UNIX.

6.2 Installing the Sources

First, un-tar the release somewhere. Go to a directory where you want to install the sources.
For simpilicity, we let that be $SMROOT. Users of sh, ksh, etc. should omit the word “set”:

|UNIX |[NT-CYG

set SRCDIR=$SMROOT/build

mkdir -p $SRCDIR

cd $SRCDIR

gunzip -c $TARDIR/src-2.0.tar.gz | tar xvf -

If you build with NT-VS, instead install the project and source files:

NT-VS

set SRCDIR=$SMROOT/build

mkdir -p $SRCDIR
cd $SRCDIR
gunzip -c $TARDIR/prj-2.0.tar.gz | tar xvf -

This installs the sources as described below, as well as a directory $SRCDIR/nt_buildsm, which
contains the Visual Studio project files.

Now you have the following files and directories in $SRCDIR:
GNUmakefile A bootstrapping Makefile, which invokes imake.
Imakefile Source from which Makefile is generaged by imake.

imake/ Sources for imake and Perl script to bootstrap building of imake.
config/ Configuration files and other files read by imake.

tools/ Perl scripts (*.pl) used by the build environment, including those that generate source
files (*_gen.{cpp,h}) in src/.

src/ Sources for Storage Manager, including inputs files (*.dat) to Perl scripts for generating
source files.

After you have followed the directions below to build the Storage Manager, you will also
find $SRCDIR/installed.

6.3 Setting Build-time Configuration Options

Before you build the Storage Manager, you must give values to some configuration options.
The options are located in the file $SRCDIR/config/shore.def.

NOTE The file shore.def is #included by the Makefiles, so it controls what
files are built and what tools are used when building under make, but not when
building under Visual Studio. It is also #included by the sources, so it controls
conditional compilation in the sources, regardless what build tools are used to build
the software.

| UNIX||NT-VS|[NT-CYG
The release contains several sample shore.def files for different configurations. Choose the
one that best suits your environment.

cd $SRCDIR/config
1ls shore.def.*

choose the ARCH and VERS to suit your environment.
set ARCH=linux
set VERS=debug

Use the appropriate shore.def
cp shore.def.$ARCH.$VERS shore.def

You MUST edit shore.def to provide the correct values for the
PERL_DIR_PATH (see below).

You MUST edit shore.def to provide correct values for the
TCL_DIR_PATH, TCL_DIR_VERSION and TCL_LIB_EXTENSION (see below)
or else you must undefine BUILD_DEFAULT_SSH (see below)

| UNIX || NT-VS||NT-CYG

The file shore.def contains numerous C-preprocessor macros that affect configuration and
compilation. In the list of macros below, only the ones marked with an asterisk (*) are required
for building under Visual Studio.

Normally the only ones you care about are those described below. The options controlling
debugging support and optimization take one of the values ON and OFF. We describe them
briefly here. More information about the effects of these options can be found by reading the
comments in shore.def. Some of the “options” are not optional (they do not work). For
exampoe, USE_COORD assumes the existence of code that is not distributed in this release.

DEBUGCODE controls whether auditing and assert checking code is generated. For development
and testing purposes we strongly suggest setting this to ON. Turning it on seems to slow
things down by a factor of two, at least.

TRACECODE controls whether tracing code is installed. For development and testing purposes
we strongly suggest setting this to ON. Turning it on seems to slow things down by a
factor of two, at least.

DEBUGGERSYMBOLS controls the generation of symbols for use by debuggers (-g flag for gcc).

OPTIMIZE controls compiler flags related to optimization. When OPTIMIZE is OFF and you are
compiling with gcc, gec is called with -0 because this seems to avoid gcc bugs (at least
in earlier versions of gcc).

TCL_DIR_PATH You must define this to point to the location of your installed TCL if you choose
to build the tester, ssh. To build the name of the library, the build system appends

/1ib/1lib VERext to this path, where VER is the value of TCL_DIR_VERSION, below, and
ext is the value of TCL_DIR_EXTENSION, below.

TCL_DIR_VERSION If you choose to build the tester (ssh), you must define this to give the
version number in the name of the Tcl libraries in your installation. If your library is
installed as 1ibtc18.0.so0, you should define TCL_DIR_VERSION to be 8.0.

TCL_DIR EXTENSION If you choose to build the tester (ssh) on Unix, you must define this to
determine which Tecl library will be linked with ssh. On NT, this is ignored. On Unix,
this must be .a for the static library or it must be .so for the dynamic load library. If
it is undefined, the static library is used. Note the “.”.

INSTALL PATH If you want make install to install anywhere other than $SMROOT/installed/,
set this. This has no effect on builds with Visual Studio.

*PERL DIR_PATH Location of Perl (needed to build Makefiles and generated sources). The
build system appends /bin/perl to this path. This MUST be set to the proper path
before you can create the generated source files (a prerequisite to building, regardless
which environment you are using.

The following options are simply #define-d or #undef-ed.

BUILD DEFAULT_SSH If defined, the Storage Manager tester shell ssh is built automatically
(this requires Tecl). You can undefine it to avoid building ssh2.

BUILD DEFAULT SMLAYER TESTS You can define this to cause the default make target to descend
into the various tests/ directories and build the unit tests. WARNING: this consumes
lots of disk space!

FORCE_EGCS Undefine this if you use gcc Version 2.7.3 rather than egcs.

*DONT_TRUST_PAGE LSN If this is defined, formatting of volumes is faster at the expense of
longer recovery, as page formats must be redone during recovery. If this is undefined, the
LSNs on pages are trusted to have been cleared when the volume was formatted, which
means that when volumes are formatted, each page on the volume is initialized. With
large volumes, this takes a long time.

NT-VS

For building with Visual Studio, some of the configuration options are in the project files,
and since there are many projects that make up the Storage Manager, it is not easy to change
these options. For this reason, we have put as many configuratin options as possible in source
files that are included during compilation and generated by the build system.

2This shell has nothing to do with the other ssh, the Secure Shell.

10

The path to Tcl must be provided if the tester ssh is to be built, but it must be provided
by editing files other than config/shore.def.

Now you must edit two files to locate your installed Tcl. (These files are not generated or
edited by the build process. It is best if you make a backup copy of these files before you edit
them.)

Both files are in $SRCDIR/nt buildsm/src/smlayer/sm/ssh:

ssh.dsp Locate two instances of the string tc180.1ib and edit the paths as appropriate to
your installation of Tcl.

local flags.i Change the last line to reflect the path for your installation of Tcl.

This editing can be done with the sed script fix_tcl.sh, which can be sourced in a bash
shell, or the files can be hand-edited. If you use the script, you must first edit the variables
TCLINCLUDE and TCLLIB appropriately. Be careful to escape backslashes in the paths.

6.4 Creating Generated Files

When building with make, you must generate the Makefiles and several source files® with imake.
The source directory contains imake, along with a Perl script to bootstrap imake.

This step must be taken even if you are building with Visual Studio, because the tar file
containing the source and the project files does not contain the generated files. See the section
Omitting ssh below.

[NT-VS||NT-CYG |

Do not do these steps on Unix.
cd $SRCDIR
make for_vstudio

Under Unix, this “make” step is optional, and the target is automatic rather than
for_vstudio; it is optional because it is accomplished by the compilation step (in the next
subsection).

6.5 Building the Storage Manager

Now that you have installed the sources (and project files, if building with Visual Studio) and
generated any necessary files, you can build the libraries. The distribution is configured to
build the libraries and the Storage Manager tester shell ssh. If you do not wish to build ssh,
see the section Omitting ssh below.

3Generated source files are called *_gen.h and *_gen.cpp

11

NT-VS

Using the Explorer, navigate to the directory $SRCDIR/nt buildsm/src and click on
src.dsw to open the workspace with Visual C++. The first time you open the workspace, you
will see a dialog box indicating that Visual Studio cannot find one or more of the components
of the workspace. This refers to the .ncb file, which is generated by Visual Studio if it is
missing. *

Having opened the workspace, click the following sequence: Build - Batch Build - Build.
This builds both the Debug and Release versions of the Storage Manager and its tester, and
it takes 2-3 hours. If you wish to build only one or the other, see Building only the Debug or
Release Version, below.

|UNIX |[NT-CYG

cd $SRCDIR
make

This takes 30 - 60 minutes, depending on the architecture and your choice of versions to build
(Debug or Release).

6.6 Selecting Subsets to Build
6.6.1 Omitting ssh
If you do not wish to build the tester (ssh):

|UNIX |[NT-CYG
Undefine BUILD_DEFAULT_SSH in the configuration file shore.def and (re-)start with the
step Creating Generated Files, above.

NT-VS
Having opened the workspace with Visual C++, click the following sequence: Build - Batch

Build. Locate the two project conigurations for ssh in the list (ssh - Win32 Debug and ssh

- Win32 Release) and click on them. The check marks next to them should disappear. Now

click on Build.

4You must have installed Visual C++/Visual Studio 6.0!

12

6.6.2 Building only the Debug or Release Version

If you wish to build only the Debug or Release versions of the Storage Manager:

| UNIX |[NT-CYG |
In the Unix and Cygwin environments, only one of the versions (Debug or Release) is built.
If it is not the one you want, do one of the following:

e Go back to the step Setting Configuration Options and choose a different shore.def file.
Continue from there.

e Change the values for DEBUGCODE, TRACECODE, and
OPTIMIZE in the file $SRCDIR/config/shore.def, as described in the section Setting
Configuration Options, above. Continue with the step Creating Generated Files, above.

NT-VS
Having opened the workspace with Visual C++, click the following sequence: Build - Batch
Build. Locate the all project conigurations labelled zzz- Win32 Debug and click on them. The
check marks next to them should disappear. Now click on Build.

6.6.3 Regenerating Source Files

If you choose to modify code and wish to re-build from scratch, regardless of your build
environment, you can do so. Even if you are building with Visual Studio, you must use the
Cygwin utilties to regenerated the (generated) source files.

If you want to change the configuration or if you are modifying sources, you can use

make make to create the Makefiles.

make automatic on UNIX, to generate Makefiles and generated source files.
make for_vstudio on NT, to generate Makefiles and generated source files.
make depend to make dependencies. (UNIX, NT-CYG)

make clean to remove all object and executable files. (UNIX, NT-CYG)

make pristine to remove all generated files. (UNIX, NT-CYG)

13

6.6.4 Building Unit Tests

The Storage Manager comes with unit tests for each library. The directories containing the
source for each library also contains a subdirectory called tests/. By default, these tests are
not built. You can build them as follows:

|UNIX |[NT-CYG

Descend to the tests directory of choice. Run

make automatic
make

This builds all the tests in that directory. You can build a test foo (foo.exe on NT) with

make foo # make foo.exe on NT

NT-VS

Open Visual Studio on the workspace ntbuild sm/src/src.dsw. Choose the project whose
name matches the test of interest. Select it with a right click, make it the active project if
necessary, and click Build (selection only) . Remember that there are two versions of each
project, a Debug and a Release version. The easiest way to choose one or the other is by
using the sequence Build - Set Active Configuration, select the item in the list of Project
configurations, then use any of the myriad ways to build the selected project.

If you wish to build one or more test programs for the threads layer, descend to
src/smlayer/sthread/tests. One test of interest is ioperf: It can be used to measure
I/0 performance through the threads package. Below is its usage information.

(prompt): ioperf

Usage: ioperf [-s block_size] [-n block_count] [-R random] [-1 local_io] [-f
fastpath_io] [-k keepopen_io] [-c check_flag] [-r read_only] [-w write_only]
[-b read_and_write] file

-s block_size Determines the size of a write or read request, as in dd.
-n block_count Determines the total number of blocks read or written.
-R If used, ioperf issues seeks to pseudo-random locations within the range [0,block_count].

-1 If used, ioperf performs I/O requests locally rather than through the diskrw process
[Unix only].

-f Ignore. (Not implemented.)

14

-k Ignore.

-c Perform internal sanity check on seek cursor.
-r Read the file.

-w Write the file.

-b Read and write the file.

file Name of file (or device).

Before you can run the program under Unix, it must have access to the diskrw program.
(On NT, the diskrw functions run in a thread of the program rather than in a separate process.)
For example (UNIX) :

locate diskrw
In -s ../diskrw

create a file called "junk"
ioperf -s 8192 -n 1000 -w junk

read junk (sequentially)
ioperf -s 8192 -n 1000 -r junk

read junk (pseudo-randomly)
ioperf -s 8192 -n 1000 -R junk

7 Installing The Storage Manager

|UNIX || NT-CYG

The command make install installs the executable files in $SRCDIR/installed/bin,
the include files in $SRCDIR/installed/include, and other supporting files in
$SRCDIR/installed/lib.

cd $SRCDIR
make install

To install elsewhere, simply move this directory, or change the target location by updating
the macro INSTALL PATH in shore.def before you build. See the section Setting Configuration
Options, above.

15

NT-VS

In a Bash shell, you can source the script install_all. If you want to change the desti-
nation directory, edit this script. You must also edit the script to choose between Debug and
Release versions.

cd $SRCDIR

#

edit install_all to change the default target of the install
#

source install_all

8 Testing Your Installation

This section lists steps to test your installation. Included are painfully brief instructions for
running the Storage Manager tester. We do not include complete documentation for this tester;
rather, we just give a single command to run a large set of test scripts.

8.1 Running ssh

The Storage Manager shell (tester) is built with the include files and libraries in the source tree
(not with the installed Storage Manager). The directories in which ssh is built is the easiest
place to run ssh.

| UNIX || NT-CYG

cd $SRCDIR/src/smlayer/sm/ssh

NT-VS

cd $SRCDIR/nt_buildsm/src/smlayer/sm/ssh

Now create directories in which to store the data and log, and copy (and edit, if you like) the
configuration file for the Storage Manager and the startup file for ssh. NOTE: The buffer pool
must be fairly large (3.2 MB) to get through all the tests, because some of the tests “hog”
buffer pool frames.

|UNIX ||[NT-CYG || NT-VS |

16

mkdir -p volumes log
cp .shoreconfig.example .shoreconfig
cp .sshrc.example .sshrc

You are ready to run ssh. Be sure that in the context in which you run ssh, ./volumes and
./log are on a local disk. Ssh can be run on a short script just to verify that things are properly
built, or it can be run on a full set of scripts (this takes several hours with a Debug version,
and an hour or more with a Release version).

|UNIX |[NT-CYG

short test:
./ssh -f scripts/vol.init
devid_t::devid_t(./volumes/devl): open:
error in sdisk_unix.cpp:157 Operating system error --- No such file or directory
You can safely ignore the above messages (if you get it), which is
a warning message issued when no log files are encountered at
recovery time.
Under NT, the message is slightly different: "The system cannot find the
file specified."”

H OB H O H -

long test:
./ssh -f scripts/all

NT-VS

short test:

Release/ssh.exe -f scripts/vol.init

The first time you run this, you should see a message
akin to the one shown above (in the Unix case).

long test:
Release/ssh.exe -f scripts/all

8.2 Running file_scan

In src/smlayer/sm/tests is a sample program that populates and scans a file. The directory
contains a sample makefile, Makefile.gcc for use with gcc. This make file builds with the

17

installed Storage Manager include files and libraries. You must already have taken the steps
in the section Installing The Storage Manager, above.

Edit the Makefile.gcc to refer to the correct INSTALL DIR. It is also important to set the
GCC macro to use the same compiler used to build the Storage Manager.

The file exampleconfig is the run-time configuration file read by file_scan. Be sure that
in the context in which you run file_scan, ./volumes and ./log are on a local disk.

|UNIX |[NT-CYG

cd $SRCDIR/src/smlayer/sm/tests
Edit Makefile.gcc as needed

make -f Makefile.gcc
mkdir -p log volumes

file_scan -i
Ignore message about no such file or directory.

file_scan

You can build this test with Visual Studio, but the installed workspace does not build
against the libraries and include files that you just installed. It builds with those found in
the source directories. If you want to build against those you installed, you must change the
dependencies and files associated with the project.

NT-VS

cd $SRCDIR/nt_buildsm/src/smlayer/sm/file_scan
mkdir -p log volumes

Open the workspace with Visual C++. Click the following sequence: Build - Batch Build.
Locate the two project conigurations for file_scan in the list (file_scan - Win32 Debug and
file_scan - Win32 Release) and click on one or the other. The check mark next to it should
appear. Now click on Build. After it is built, click the following sequence: Build - ! Ezrecute
file_scan.eze.

9 Setting Run-time Configuration Options

The Storage Manager requires the setting of configuration options, which is normally done by
reading a configuration file in the the main program. The sources for ssh show how this is

18

done. The sample configuration file $SRCDIR/src/smlayer/sm/ssh/.shoreconfig.example
shows the format of configuration options.

A complete list of the run-time configuration options is in the sources, in
src/smlayer/sm/sm.cpp. In that file, each call to the function add_option creates a run-
time option. There is also a manual page describing run-time options; the manual page is

manssm/ssm_options.pdf.

19

