
ANSI X3H2-96-013

ISO/IEC JTC1/SC21/WG3 DBL ??

I S O

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

February 9, 1996

Subject: SQL/Temporal

Status: Informational

Title: A Road Map of Additions to SQL/Temporal

Source: ANSI Expert's Contribution

Author: Richard T. Snodgrass

Abstract: This document outlines a \road map" of future change proposals to SQL/Temporal,
drawn from the TSQL2 language speci�cation. It also addresses ten common ques-
tions about temporal query languages.



2 DBL:?? and X3H2-96-013

References

[1] B�ohlen, M. H. Valid Time Integrity Constraints. Technical Report TR 94-30. Department of Computer
Science, University of Arizona, Tucson, November, 1994.

[2] B�ohlen, M. H., C. S. Jensen and R. T. Snodgrass. Evaluating the Completeness of TSQL2. In Proceedings
of the VLDB International Workshop on Temporal Databases. Ed. J. Cli�ord and A. Tuzhilin. VLDB.
Springer Verlag, Sep. 1995.

[3] Cli�ord, J. and A. Tuzhilin (editors). Proceedings of the VLDB International Workshop on Temporal
Databases, Springer Verlag Workshops in Computing Series, Z�urich, Switzerland, September, 1995.

[4] Jensen, C. S., J. Cli�ord, R. Elmasri, S. K. Gadia, P. Hayes and S. Jajodia (editors). A Glossary of
Temporal Database Concepts. ACM SIGMOD Record 23, No. 1, March, 1994, pp. 52{64.

[5] Melton, J. (ed.) SQL/Temporal. October, 1995. (ISO/IEC JTC 1/SC 21/WG 3 DBL-LHR-009.)

[6] Silberschatz, A., M. Stonebraker, and J. Ullman (editors). Database Research: Achievements and Op-
portunities Into the 21st Century. Report of an NSF Workshop on the Future of Database Systems
Research, May, 1995.

[7] Snodgrass, R. T. and H. Kucera. Rationale for Temporal Support in SQL3. 1994. (ISO/IEC
JTC1/SC21/WG3 DBL SOU-177, SQL/MM SOU-02.)

[8] Snodgrass, R. T. (editor), Ilsoo Ahn, Gad Ariav, Don Batory, James Cli�ord, Curtis E. Dyreson, Ramez
Elmasri, Fabio Grandi, Christian S. Jensen, Wolfgang K�afer, Nick Kline, Krishna Kulkarni, T. Y. Cli�
Leung, Nikos Lorentzos, John F. Roddick, Arie Segev, Michael D. Soo and Suryanarayana M. Sripada.
The Temporal Query Language TSQL2. Kluwer Academic Pub., 1995, 674+xxiv pages.

[9] Snodgrass, R. T., M. H. B�ohlen, C. S. Jensen and A. Steiner. Adding Valid Time | Part A.
SQL/Temporal change proposal, ANSI X3H2-95-485, ISO/IEC JTC1/SC21/WG3 DBL LHR-096, De-
cember, 1995, 40 pages.

[10] Steiner, A. and M. H. B�ohlen. The TimeDB Temporal Database
Prototype, September, 1995. Available at ftp://www.iesd.auc.dk/general/DBS/tdb/TimeCenter or
at ftp://ftp.cs.arizona.edu/tsql/timecenter/TimeDB.tar.gz.

[11] Tsotras, V. J. and A. Kumar. Temporal Database Bibliography Update. ACM SIGMOD Record 25, 1,
March, 1996, 11 pages.

1 Introduction

Several members of the ISO committee have requested a \road map" of where SQL/Temporal is going, in
terms of the next few change proposals. This document provides such a road map, and also addresses several
common questions concerning temporal query languages.

2 Ten Questions

When application builders, database administrators, and members of standards committees alike �rst en-
counter a new concept, many questions naturally arise. Here we present, and answer, the ten most common
questions concerning temporal support in SQL.

1. Why temporal?

Most database applications store historical data. In fact, it is di�cult to identify applications that do
not require temporal support. Temporal requirements are more prevalent than requirements for spatial
support, for textual support, or for multimedia support, all of which are being added to SQL3. The
Gartner Group Inc. has found that on average one in every 50 lines of application code has a date
reference. [7] and chapter 1 of [8] list a wide variety of applications that require temporal support.



DBL:?? and X3H2-96-013 3

2. Is SQL (SQL-92, SQL3) adequate?

The fact that all of these applications have been written using SQL provides concrete evidence that
temporal support in the query language is not mandatory. In fact, many applications storing historical
data have been developed using SQL-89, which doesn't even include datetime or interval data types.

However, when considering adequacy, rather than necessity, the conclusion of the research community
and of many users is that SQL does not provide adequate support for temporal applications. To
illustrate this, the reader is invited to attempt to formulate the following straightforward, realistic
queries in SQL3. In doing so, the limitations of SQL will be immediately apparent.

� An Employee table has three columns: Name, Manager and Dept. We then store historical
information by adding a fourth column, When, of data type PERIOD. Manager is a foreign key
for Employee.Name. This means that at each point in time, the character string value in the
Manager column also occurs in the Name column (probably in a di�erent row) at the same time.
This cannot be expressed via SQL's foreign key constraint, which doesn't take time into account.

� Consider the query \List those employees who are not managers." This can easily be expressed
in SQL, using EXCEPT or NOT EXISTS, on the original, three-column table. Things are just a little
harder with the When column; a where predicate is required to extract the current employees.
Now consider the query \List the history of those employees who are or were not managers."
EXCEPT and NOT EXISTS won't work, because they don't consider time. This simple temporal
query is a challenging one even to SQL experts.

� Consider the query \Give the number of employees in each department." Again, this is a simple
query in SQL. Converting it into a temporal query \Give the history of the number of employees
in each department" is extremely di�cult without temporal support in the language.

� Consider the modi�cation \Change the manager of the tools department for 1994 to Bob." This
modi�cation is di�cult in SQL because only a portion of many validity periods needs be changed,
with the information outside of 1994 retained.

Most users know only too well that while SQL is an extremely powerful language for writing queries on
the current state, the language provides much less help when writing temporal queries, modi�cations,
and constraints. What users don't realize is that appropriate language facilities have been developed
that enable all of the above to be simple extensions of their nontemporal variants.

[7] and chapters 1, 3 and 4 of [8] provide further examples of queries that are di�cult in SQL but easy
to express using temporal constructs.

3. Why TSQL2?

Given that temporal constructs are needed, the focus turns to identifying which constructs make the
most sense. This has been an active area of research for twenty years. In that time, over 1200 papers
have been published [11]. Many temporal query languages have appeared in the literature. Every
obvious approach, and many not so obvious, has been explored in depth.

In 1993, as a follow-on to the International Workshop on an Infrastructure for Temporal Databases,
a group of eighteen temporal database experts initiated the design of a second-generation temporal
query language as an extension of SQL. This work culminated in the design of TSQL2, whose language
speci�cation was published in October, 1994. Subsequently, a 700-page book detailing the design
decisions of the language appeared in September, 1995 [8]. TSQL2 is by far the most comprehensive,
well-documented, consensual temporal query language. It has become the de facto standard in the
temporal database community. In papers presented at the recent VLDB Workshop on Temporal
Databases, it was the only query language that was discussed by people other than its designers; it
was the topic of 30% of the papers and panels at that workshop [3]. The distinguished authors of [6]
summarized the situation as follows.

\Long-term exploration for appropriate models of temporal data has now resulted in a
number of di�erent proposals for extending query languages to better support temporal data.
Among these, the one which currently has the widest support is the TSQL2 proposal, which
extends SQL-92." ([6], page 3)



4 DBL:?? and X3H2-96-013

TSQL2 emphasizes several core concepts. Central is the notion of valid-time tables, with implicit
timestamps.

4. Why not explicit timestamps?

As we have seen above, a period column can certainly be used to store temporal information and to
perform temporal queries and modi�cations. However, by adopting implicit timestamps, a number of
signi�cant advantages accrue. This is the reason 95% of the temporal models in the literature assume
time is not in an explicit column.

� Temporal upward compatibility
This notion has been de�ned formally [9]. Intuitively, when a table not storing temporal infor-
mation, such as the three-column employee table, is rendered temporal, we would like existing
(non-temporal) applications to work unchanged. While an SQL view can hide the fact that a
When column has been added (using a where clause to select the current employee, department,
and manager), this approach doesn't work for modi�cations, because such a view is not updat-
able. Hence, when explicit timestamps are added to a table to enable it to record time-varying
data, existing applications are broken. Potentially hundreds of thousands of lines of code have
to be carefully inspected to determine what changes to make. When timestamps are implicit, all
existing non-temporal applications will continue to work, without change.

� Sequenced queries
This notion is also de�ned formally [9]. Intuitively, a sequenced query is the temporal analogue
of a query on the current state. The queries given above are sequenced queries. If timestamps are
implicit, then the user is freed from being required to compute the resulting timestamps; instead,
that task is the DBMS's responsibility. This greatly simpli�es many queries. In particular, to
convert a conventional query into a sequenced query, all one has to do is prepend the reserved word
VALID to the conventional query. This greatly increases the ease of use of the query language. Any
conventional query, however complex, utilizing whatever SQL3 constructs, can be so converted to
a sequenced query, providing a time-varying result.

� Sequenced modi�cations
Modi�cations that are to be applied over all time (e.g., correct someone's misspelled name),
as well as modi�cations over a speci�ed period of time (e.g., the modi�cation above, applied
to 1994) are very easy to express when the DBMS is responsible for modifying the timestamp.
Such modi�cations become quite di�cult when the user is responsible for computing the correct
timestamp.

� Integrity constraints
Similarly, integrity constraints that apply at each point in time (e.g., the referential integrity
constraint above) or that apply at each point over a speci�ed period of time are very easy to
express with implicit timestamps [1]. The alternative is for the user to include the explicit column
in the integrity constraint, which makes its speci�cation very cumbersome. In particular, the
available constructs to declare primary keys, uniqueness, and foreign keys and referential integrity
do not apply to valid-time tables; such constraints need to be speci�ed using complex assertions.
An example is the foreign key constraint mentioned above on page 3.

� Transaction time
The transaction time of a fact is the time between when it was inserted into the database and when
it was logically removed from the database [4]. For some data, it is useful to retain past states,
say for auditing purposes; in some situations, data retention is required by law. If the transaction
time is present in a column, available for manipulation by the user, then it is impossible to ensure
the correct semantics of transaction time. Users could easily corrupt the database. It is important
to let the DBMS handle the semantics of transaction time.

We note in passing that the bene�ts of sequenced queries also apply to transaction time. One
can convert a conventional query to be transaction sequenced by prepending the reserved word
TRANSACTION to the query. TSQL2 treats the two orthogonal concepts of valid time and transac-
tion time symmetrically.



DBL:?? and X3H2-96-013 5

Most applications are temporal applications, and will be simpli�ed considerably when the query lan-
guage has adequate temporal support.

5. What if a user prefers the explicit column approach?

It is perfectly �ne to use explicit period columns in TSQL2. TSQL2 does not replace any functionality
in SQL; it only adds functionality that application developers can choose to use or to ignore. In
particular, the following is possible.

� Conventional tables with a period column that speci�es when the row is valid can be converted,
via a view or within a query, to a valid-time table with implicit timestamps, to utilize the increased
functionality available to valid-time tables (such as sequenced queries).

� Valid-time tables can be converted, via a view or within a query, to a conventional table with an
additional period column, if the user prefers to manipulate the data in that fashion.

These conversions are termed nonsequenced queries, and are discussed briey below.

We emphasize that this is not an either/or situation. Users can specify valid-time tables with implicit
columns if they wish the DBMS to take care of computing the appropriate timestamps, or they can
specify conventional tables if they prefer to compute the timestamps themselves. This decision can be
made at any time, including for an individual correlation name in a from clause within a particular
query.

6. Wouldn't a di�erent language design also work?

There is a plethora of language designs, with over 40 in the published literature. The TSQL2 language
design committee included as members the designers of about a third of the temporal query languages,
including ChronoBase, DM/T, HRDM, IXSQL, OQL, SQL+T, TEER, TMQL, TOOA, TOOSQL,
TOSQL, and TQuel. The committee has been studying and contributing to the �eld of temporal
databases for a total of 165 years. They were aware of what works, and more importantly, what doesn't
work. Many other designs have been explored. Seemingly attractive alternatives have turned out to
have had undesirable properties. Temporal query language design is amazingly subtle (otherwise, there
wouldn't be so many extant temporal query languages). That is why it is important to be cognizant of
the substantial prior research, to avoid reinventing the wheel, or more likely, reinventing the triangular
wheel.

[8] contains an extensive discussion of the design decisions of TSQL2, including an in-depth comparison
with the many other temporal query languages that have been de�ned. This design has carefully
avoided pitfalls exhibited by earlier languages, many of which are documented in the extant literature.

At the same time, it is critical that the change proposals be responsive to the concerns raised by the
standards committees and others. However, alterations to TSQL2 must be made very carefully, with
a careful analysis of the rami�cations of these changes.

As an example, the ANSI committee raised the concern at the December, 1994 meeting that in TSQL2
the keyword SNAPSHOTwas required to get the same behavior with temporal tables that was exhibited by
non-temporal tables. Several members of the research community investigated further, and determined
that that was indeed a problem with TSQL2 [2]. The change proposals, e.g., [9], present a variant of
TSQL2 (drawn from the design of a language called Applied TSQL2, or ATSQL2) that addresses these
concerns. In particular, the VALID clause was moved from inside the SELECT to before it. In this way,
the comments of the ANSI committee resulted in a better language design, while retaining the bulk of
the constructs of the original de�nition.

7. What if multiple times are required in a table?

[8] goes into some detail justifying why TSQL2 adopts precisely one valid time and one transaction
time. However, the user is free to include datetime, interval, and period columns in a valid-time or
transaction-time table. If the user desires all temporal information as columns, then the valid-time
table can be converted into a conventional table, with multiple datetime columns, either in a view or
within a particular query, thereby giving each time-oriented column equal status.



6 DBL:?? and X3H2-96-013

8. Won't these features be hard to implement?

The answer is surprising. In terms of table representation, the implicit timestamps can be stored
internally as an additional column. Hence, existing storage structures and access methods apply
without change. Nonsequenced queries and modi�cations (to be introduced in change proposal B) on
valid-time tables turn out to be very similar to existing conventional queries and modi�cations, making
them easy to implement.

Sequenced queries can be implemented using a temporal algebra. Expressions in this temporal algebra
can be converted to the conventional Codd algebra [9]. Hence, the underlying query optimizer and
evaluator need not be changed. Some new code will be required in the query analysis portion of the
DBMS to support the additional functionality available to the user.

A publicly-available prototype demonstrates feasibility [10]. This prototype may be down-loaded from
FTP.cs.arizona.edu in the timecenter directory.

Recall also that these new facilities will be added to SQL/Temporal, and so their implementation will
not be required for compliance with the SQL3 standard. Support of these facilities will be completely
optional, though highly desirable by users.

9. What about the new features introduced in SQL3?

The change proposals have been carefully written to minimize undesirable interactions with the under-
lying conventional query language. In particular, nonsequenced queries (views, cursors, modi�cations,
etc.) utilize the exact semantics of the underlying query language, making the valid time available as
simply another column. This means that nonsequenced queries will work with whatever is added to
SQL3.

Sequenced queries (views, etc.) apply the semantics of the underlying query language to each point
in time. So the sequenced version of the query \List the employees who are not managers" applies
the query to the employees on January 1 to get the result on January 1, then to the employees on
January 2 to get the result on January 2, etc. (This can be done much more e�ciently than actually
executing the query for each time point [9].) The semantics of sequenced queries is also in terms of
the underlying query language. If a new construct, with new semantics, is added to SQL3, then that
semantics will be applied on a point by point basis in a sequenced query.

In conclusion, the novel features of SQL3 should not in general present undesirable interactions with
the features introduced in SQL/Temporal.

10. Doesn't this break the relational model?

If a user wishes the timestamp of a valid-time table to be an explicit column, that is easy to specify, as
a view or within the query. In fact, the information can be stored in precisely this way. The same holds
for transaction-time tables and bitemporal tables. If users only want current information from a valid-
time table, that is easy to specify (in fact, that is the default). If users wish to avail themselves of the
above-listed advantages of temporal tables, that is also possible. If the user wishes to see timestamps
of valid-time tables as explicit columns, that is also possible, via a view.

Again, it is not an either-or situation. Users are free to apply the facilities best suited to solve their
problems. In fact, one can conceptualize temporal tables as being special \views" on conventional
tables with explicit timestamp columns. Consider two tables: a valid-time table VT with an implicit
timestamp and a snapshot table ST with identical columns as well as an explicit timestamp column.
VT can be considered to be a special view of ST. Operations on VT will be de�ned (in General Rules)
as a shorthand for equivalent, though more complex, operations on ST. In this light, temporal tables
are just another way to query and modify conventional tables, and are thus fully consistent with the
relational model.

In the next section, we discuss the staging of temporal constructs into SQL/Temporal. We indicate what
will be proposed, and when.



DBL:?? and X3H2-96-013 7

3 SQL/Temporal Change Proposals

We identify three phases in the evolution of the SQL/Temporal part.

3.1 Initial Base Document

The goal of this phase was to establish a new part, called SQL/Temporal, and to include support for a new
data type to augment DATE, TIME, TIMESTAMP, and INTERVAL. This data type, PERIOD, is now present in the
base document.

3.2 Early Progression

The goal of this phase is to include the core concepts into SQL/Temporal. With this functionality, users will
be able to express queries, modi�cations, views, and integrity constraints on time-varying data in a much
more natural fashion than is possible with the current SQL3.

The intention is to have a modi�ed version of the �rst change proposal (A), and initial versions of the
other two change proposals (B and C), to the ANSI committee for its next meeting. These proposals build
on each other, and it is important to understand each before going on. If acceptable proposals emerge from
this and the next ANSI meeting, then they could be discussed at the May ISO meeting.

For each change proposal, the major features to be proposed are listed.

� Change Proposal A

{ Valid-time tables

{ Temporal upward compatibility

{ Sequenced queries

{ Sequenced modi�cations

{ Sequenced views, cursors, integrity constraints

{ Valid time table literals

Note that, as discussed above, using explicit timestamp columns violates temporal upward compat-
ibility, and makes the speci�cation of sequenced queries, modi�cations, views, cursors, and integrity
constraints often very di�cult.

These powerful temporal capabilities are added in such a way that they can be used with straightforward
clauses, predicates, and other appropriate constructs introduced into existing statements.

� Change Proposal B

{ Nonsequenced queries

{ Nonsequenced modi�cations

{ Converting between valid-time tables and conventional tables

{ Accessing the valid time in the where clause and order clause

Nonsequenced queries are necessary to express some complex queries, including converting between
valid-time and conventional tables. Nonsequenced modi�cations allow future information to be stored,
and past information to be corrected.

The changes required here to the syntax are fairly minor.

� Change Proposal C

{ Transaction table de�nition

{ Transaction sequenced queries and modi�cations

{ Transaction non-sequenced queries



8 DBL:?? and X3H2-96-013

{ Transaction time in views and integrity constraints

{ Accessing the transaction time

Transaction sequenced queries are entirely analogous to, and orthogonal to, valid sequenced, in syntax
and semantics. This change proposal will provide a straightforward application of valid-time concepts
to this new concept of the transaction time. The syntactic additions are quite minimal.

4 Later Progression

The goal is to round out SQL/Temporal with additional language features from TSQL2 that will be very
helpful to large classes of users. These facilities should be considered only when the facilities of the early
progression have stabilized.

The facilities in this portion are deferred for one or both of two reasons: the syntactic changes are more
involved or the facilities are less central, though still important.

The design has been fully worked out in TSQL2 [8]; these additions are compatible with both the changes
in the Early Progression and other features of SQL3.

The order of these change proposals has not been determined; they are listed alphabetically. Most of
the change proposals are independent of each other, with the exception of temporal indeterminacy and
user-de�ned time granularities, which are closely integrated.

For details, consult the indicated chapter of the TSQL2 book [8].

� Change Proposal: Event tables (cf., Chapter 16 of [8])

� Change Proposal: The From clause (Chapter 12)

Temporal coalescing combines overlapping or adjacent periods into maximal periods. Restructuring
and coupled correlation names provide very convenient syntactic sugar in the from clause. No new
reserved words are added.

� Change Proposal: Now-relative values in the database (Chapter 20)

Now-relative values add the ability to store CURRENT TIMESTAMP as a data value in tables.

� Change Proposal: Schema versioning (Chapter 22)

� Change Proposal: Temporal grouping for aggregates (Chapter 21)

� Change Proposal: Temporal indeterminacy (Chapter 18)

� Change Proposal: User-de�ned time granularities (Chapter 19)

This will include user-de�ned literal formats and multi-lingual support for time literals.

� Change Proposal: Vacuuming (Chapter 23)

Temporal databases do require a new way of thinking about information. Fortunately, there now exists a
carefully designed solution, developed by a team of temporal database experts, who are fully knowledgeable
about the extensive prior research. This solution has a formal semantics, a detailed discussion of the design
decisions [8], and a prototype implementation [10]. It is a comprehensive, consistent, and well documented
design.

The designers are willing to cooperate with the SQL3 committees to transition the insights of the long
history of temporal database research into SQL3. This presents an unprecedented opportunity for the
research and standards communities to work together to provide facilities that allow users to increase their
productivity and simplify the expression of the database design, of queries, and of modi�cations. In this way,
database technology is rendered even more applicable to and supportive of virtually all database applications.



DBL:?? and X3H2-96-013 9

5 Acknowledgments

The comments of John Bair, Mike B�ohlen, Amilia Carlson, Curtis Dyreson, Len Gallagher, Christian
S. Jensen and Jim Melton improved this document considerably. Extensive discusssions with Hugh Dar-
wen and Mike Sykes clari�ed many of the topics presented here.


