
© 2023 Arm

PAC and BTI in Debian,
what are they and why
should I care?

Steve Capper

Debian MiniConf 2023-11-25

© 2023 Arm

Intro to Pointer
Authentication and
Branch Target Identifiers

3 © 2023 Arm

The problem we're trying to solve

It may be possible to overflow the stack/buffers with a payload that is controlled,

On AArch64 neither the stack nor most data buffers are executable,

Looking above, however, one can control the value of x30≡lr, thus they could dictate
control flow to already resident code (f.e. glibc routines),

Suitable routines (gadgets) can then lead to a Turing complete exploit in a data buffer,

This is termed a return-oriented programming (ROP) attack.

stp x29, x30, [sp, #-32]!

mov x29, sp

<rest of function>

ldp x29, x30, [sp], #32

ret

4 © 2023 Arm

Pointer Authentication (FEAT_PAC)

Cryptographically signed pointer authentication codes (PACs) were introduced in Armv8.3-
A. They provide a means to protect pointers from outside manipulation.

1. Each process has its own secret keys, and it uses them to cryptographically sign
pointers and produce a Pointer Authentication Code (PAC) in the upper bits of a virtual
address,

2. Then before being used, a pointer is authenticated. If the PAC bits were valid, then the
upper bits are cleared leaving a valid pointer. Otherwise, an invalid pointer is returned
that will provoke a translation fault.

5 © 2023 Arm

An example prologue/epilogue

This would protect our example program from ROP style attacks,

To aid with the deployment of Pointer Authentication, some of the instructions are in
the “NOP space” (meaning that on systems without the support, the instructions are
interpreted as a NOP),

In gcc, passing –mbranch-protection=standard will produce code that uses
pointer authentication (and another protection mechanism we’ll discuss later).

Without pointer authentication With pointer authentication

stp x29, x30, [sp, #-48]!

mov x29, sp

<rest of function>

ldp x29, x30, [sp], #48

ret

paciasp ≡ pacia x30,sp

stp x29, x30, [sp, #-48]!

mov x29, sp

<rest of function>

ldp x29, x30, [sp], #48

autiasp ≡ autia x30,sp

ret

6 © 2023 Arm

Building on top of pointer authentication (FEAT_BTI)

Pointer authentication can mitigate against return-oriented programming style attacks by
authenticating pointers that are persisted within function calls (particularly link register),
however there is another kind of exploit that it doesn't protect against: jump-oriented
programming (JOP).

It is possible to also affect control flow by targeting indirect branches, f.e. "br x0". Then a
chain of JOP gadgets can be formulated. Note that these branch targets may not
necessarily persist across function calls so cannot be authenticated.

We can, however, mitigate against JOP-style attacks by restricting where indirect branches
can land. Armv8.5-A introduces branch target identifiers (BTIs).

7 © 2023 Arm

Branch Target Identifiers

Software can restrict the possible targets for indirect branches, in order to do this, both
userspace and kernel space need to be involved.

From the userspace side: BTI instructions act as landing pads for indirect branches. These
are also in the NOP space.

One employs the following gcc flag: -mbranch-protection=standard (which
includes both PAC and BTI)

From the kernel side memory pages need to be marked as guarded. This is achieved by
setting a bit in the page table entry. The libc loader will mmap pages as PROT_BTI if it
determines that all the execution units are BTI aware.

8 © 2023 Arm

An example of BTI
int (*operation)(int argument);

int doubler(int argument)

{

 return 2*argument;

}

int main(void)

{

 operation = doubler;

 return operation(0);

}

<doubler>:

bti c

sub sp, sp, #0x10

str w0, [sp, #12]

ldr w0, [sp, #12]

lsl w0, w0, #1

add sp, sp, #0x10

ret

<main>:

paciasp

stp x29, x30, [sp, #-16]!

mov x29, sp

adrp x0, 8 <doubler+0x8>

<...>

blr x1

ldp x29, x30, [sp], #16

autiasp

ret

(using gcc with

-mbranch-protection=standard)

Can land here

Can’t land here

© 2023 Arm

Deploying PAC + BTI

10 © 2023 Arm

PAC deployment considerations

PAC instructions are implemented in the prologues/epilogues of functions and are
mostly self-contained,

One exception is call-stack unwinders; they need to strip off the pointer authentication
codes in order to correctly unwind,

libunwind and friends already have PAC support,

The Linux kernel, gcc and clang all have PAC support too.

11 © 2023 Arm

BTI deployment considerations

BTI is trickier to deploy because we need to worry about traversing execution units (f.e.
libraries and executables),

ELF files are marked with notes to advertise their BTI compatibility,

The run time loader then mmap’s with PROT_BTI as appropriate,

When building software we basically have:

𝐵𝑇𝐼𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒 =ሩ𝐵𝑇𝐼𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑢𝑛𝑖𝑡𝑠

In other words, an executable is marked as BTI compatible if and only if all the execution
units of the program are also marked as BTI compatible,

For deployment in Debian this means ensuring that BTI is enabled in all an executable’s
dependencies,

Assembler is one area where special consideration is needed.

12 © 2023 Arm

Enabling BTI in assembler
The first rule of assembler is… not to use assembler!

When adding BTI instructions to an execution unit, one needs to also advertise their
presence with a notes section, for example:
.pushsection .note.gnu.property, "a"

.balign 8

.long 4 /* size of the name - "GNU\0" */

.long 0x10 /* size of descriptor */

.long 0x5 /* NT_GNU_PROPERTY_TYPE_0 */

.asciz "GNU"

.long 0xc0000000 /* pr_type - GNU_PROPERTY_AARCH64_FEATURE_1_AND */

.long 4 /* pr_datasz - 4 bytes */

.long 3 /* pr_data - GNU_PROPERTY_AARCH64_FEATURE_1_BTI | GNU_PROPERTY_AARCH64_FEATURE_1_PAC */

.long 0 /* pr_padding - bring everything to 8 byte alignment */

.popsection

The runes for the notes can be found documented here:
• https://github.com/ARM-software/abi-aa/blob/2023Q3/aaelf64/aaelf64.rst
• https://github.com/hjl-tools/linux-abi/wiki/linux-abi-draft.pdf

And the BTI instruction can be found documented here:
• https://developer.arm.com/documentation/102433/0100/Jump-oriented-programming

https://github.com/ARM-software/abi-aa/blob/2023Q3/aaelf64/aaelf64.rst
https://github.com/hjl-tools/linux-abi/wiki/linux-abi-draft.pdf
https://developer.arm.com/documentation/102433/0100/Jump-oriented-programming

© 2023 Arm

Debugging PAC and BTI

14 © 2023 Arm

What happens if PAC or BTI get “tripped”?
This behaviour is for a Linux kernel – what to look for in a userspace crash dump…

PAC

1. Attack mode: return address corrupted,

2. The authenticate instruction will generate an
invalid LR register, (because it will fail the
cryptographic check)

3. A translation fault will occur on return,

4. Which will manifest as a SIGSEGV. (si_code:
Address not mapped to object)

BTI

1. Attack mode: function pointer corrupted,

2. Branch occurs to an instruction that is not a BTI
or PAC landing pad,

3. A branch target exception will occur, (because
the page table entry will be marked as a
Guarded Page by the kernel),

4. The kernel will inject this back into the
userspace process as a SIGILL. (si_code: Illegal
opcode)

15 © 2023 Arm

Kernel kill switches

If there is a suspected issue with PAC or BTI, it is possible to completely disable them (in
both the kernel and in userspace) at boot time via the following kernel command line
parameters:
• arm64.nopauth – disable PAC
• arm64.nobti – disable BTI

The above will prevent the kernel from employing PAC or BTI itself as well as removing
PAC or BTI from HWCAPS (and /proc/cpuinfo).

Additionally; the NOP-space instructions will, again, behave as NOPs.

16 © 2023 Arm

Am I actually compiling with BTI support?

One can see if an ELF binary has BTI support by checking the notes, f.e.
readelf -n $(which ls)

Displaying notes found in: .note.gnu.property

Owner Data size Description

GNU 0x00000010 NT_GNU_PROPERTY_TYPE_0

Properties: AArch64 feature: BTI, PAC

If one doesn’t see BTI listed then the runtime loader will not activate BTI,

We have just realized that BTI is not yet fully enabled for Debian Sid

17 © 2023 Arm

Okay… so why am I not getting BTI enabled executables?

BTI will only be enabled if every single execution unit advertises BTI as being enabled,

-mbranch-protection=standard won’t complain if BTI doesn’t get enabled,

However, we can ask the linker to tell us off with -z force-bti,
gcc -mbranch-protection=standard -z force-bti -o hello ./hello.c

/usr/bin/ld: /usr/lib/gcc/aarch64-linux-gnu/12/../../../aarch64-linux-gnu/Scrt1.o: warning: BTI turned on by -z force-

bti when all inputs do not have BTI in NOTE section.

/usr/bin/ld: /usr/lib/gcc/aarch64-linux-gnu/12/../../../aarch64-linux-gnu/crti.o: warning: BTI turned on by -z force-

bti when all inputs do not have BTI in NOTE section.

/usr/bin/ld: /usr/lib/gcc/aarch64-linux-gnu/12/crtbeginS.o: warning: BTI turned on by -z force-bti when all inputs do

not have BTI in NOTE section.

/usr/bin/ld: /usr/lib/gcc/aarch64-linux-gnu/12/crtendS.o: warning: BTI turned on by -z force-bti when all inputs do

not have BTI in NOTE section.

/usr/bin/ld: /usr/lib/gcc/aarch64-linux-gnu/12/../../../aarch64-linux-gnu/crtn.o: warning: BTI turned on by -z force-

bti when all inputs do not have BTI in NOTE section.

It is then a matter to chase through the .o files and figure out why they aren’t BTI
enabled,

Please do not upload any binaries with these warnings in, as they may crash on BTI
enabled systems!

18 © 2023 Arm

PAC + BTI status within Debian

The –mbranch-protection=standard flag is enabled for the “hardening flags”
in dpkg-dev (thus are used by the buildd’s for most packages),

However, we’ve just realized that the gcc package needs to have this enabled too!

Once https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1055711 is resolved, we
would expect BTI to make its way into most Debian “Trixie” packages,

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1055711

© 2023 Arm

Bonus architecture!
Guarded Control Stack
(GCS)

20 © 2023 Arm

Guarded Control Stack
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-a-profile-architecture-2022

This is an architectural extension in
Armv9-A that explicitly protects the call-
stack itself,

The call-stack is duplicated in a protected
memory region and with restricted
read/write from userspace.

Having the call-stack in its own area also
facilitates profiling tools as walking the
call-stack becomes significantly simpler,

On the RHS diagram a BL pushes the
return address on the control stack, and
a RET pops from the control stack.

21 © 2023 Arm

Status of GCS software support

Support still needs to be sent upstream for gcc and the dynamic linker,

Kernel patches can be found discussed on list:
• https://lore.kernel.org/linux-arm-kernel/20231122-arm64-gcs-v7-0-201c483bd775@kernel.org/

The approach above attempts to closely match the x86 shadow stack kernel mechanism
with a view to maximising portability,

Questions from our side:
• Are folks interested in shadow stacks in general?
• If so, would having GCS follow the existing shadow stack mechanisms be the preferred approach?

https://lore.kernel.org/linux-arm-kernel/20231122-arm64-gcs-v7-0-201c483bd775@kernel.org/

22 © 2023 Arm

References
The kernel documentation for PAC:
• https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/arch/arm64/pointer

-authentication.rst?h=v6.6

ELF ABI documentation:
• https://github.com/ARM-software/abi-aa/blob/2023Q3/aaelf64/aaelf64.rst
• https://github.com/hjl-tools/linux-abi/wiki/linux-abi-draft.pdf

Documentation on the BTI instruction:
• https://developer.arm.com/documentation/102433/0100/Jump-oriented-programming

Arm article on PAC + BTI:
• https://developer.arm.com/-

/media/Arm%20Developer%20Community/PDF/Learn%20the%20Architecture/Providing%20protection%20
for%20complex%20software.pdf

A nice summary on ROP + JOP style attacks:
• https://llsoftsec.github.io/llsoftsecbook/#code-reuse-attacks

A brief introduction to GCS:
• https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-a-

profile-architecture-2022

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/arch/arm64/pointer-authentication.rst?h=v6.6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/arch/arm64/pointer-authentication.rst?h=v6.6
https://github.com/ARM-software/abi-aa/blob/2023Q3/aaelf64/aaelf64.rst
https://github.com/hjl-tools/linux-abi/wiki/linux-abi-draft.pdf
https://developer.arm.com/documentation/102433/0100/Jump-oriented-programming
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Learn%20the%20Architecture/Providing%20protection%20for%20complex%20software.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Learn%20the%20Architecture/Providing%20protection%20for%20complex%20software.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Learn%20the%20Architecture/Providing%20protection%20for%20complex%20software.pdf
https://llsoftsec.github.io/llsoftsecbook/
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-a-profile-architecture-2022
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-a-profile-architecture-2022

© 2023 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

Thank you for your attention!
Any questions/comments?

24 © 2023 Arm

Gratuitous Recruitment Spam
Apologies, nothing for Debian directly this time.

We are recruiting software engineers in Sunny Manchester and Cambridge at Arm, for
the following open source software roles:
• Software defined networking,
• Automotive and Industrial solutions,
• Software defined storage and transactional databases,
• Toolchains,
• Linux Kernel & Android.

Should anyone here be interested (or know anyone who may be interested); please do
get in touch with me: steve.capper@arm.com

There is a careers page which I can help folk navigate too:
• https://careers.arm.com

I would be more than happy to answer any recruitment queries.

mailto:steve.capper@arm.com
https://careers.arm.com/

	Slide 1: PAC and BTI in Debian, what are they and why should I care?
	Slide 2: Intro to Pointer Authentication and Branch Target Identifiers
	Slide 3: The problem we're trying to solve
	Slide 4: Pointer Authentication (FEAT_PAC)
	Slide 5: An example prologue/epilogue
	Slide 6: Building on top of pointer authentication (FEAT_BTI)
	Slide 7: Branch Target Identifiers
	Slide 8: An example of BTI
	Slide 9: Deploying PAC + BTI
	Slide 10: PAC deployment considerations
	Slide 11: BTI deployment considerations
	Slide 12: Enabling BTI in assembler
	Slide 13: Debugging PAC and BTI
	Slide 14: What happens if PAC or BTI get “tripped”?
	Slide 15: Kernel kill switches
	Slide 16: Am I actually compiling with BTI support?
	Slide 17: Okay… so why am I not getting BTI enabled executables?
	Slide 18: PAC + BTI status within Debian
	Slide 19: Bonus architecture! Guarded Control Stack (GCS)
	Slide 20: Guarded Control Stack
	Slide 21: Status of GCS software support
	Slide 22: References
	Slide 23
	Slide 24: Gratuitous Recruitment Spam

